Your browser doesn't support javascript.
loading
Endothelial Aquaporins and Hypomethylation: Potential Implications for Atherosclerosis and Cardiovascular Disease.
da Silva, Inês Vieira; Barroso, Madalena; Moura, Teresa; Castro, Rita; Soveral, Graça.
Affiliation
  • da Silva IV; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal. imvsilva@ff.ul.pt.
  • Barroso M; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal. imvsilva@ff.ul.pt.
  • Moura T; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal. madalenabarroso@ff.ulisboa.pt.
  • Castro R; University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany. madalenabarroso@ff.ulisboa.pt.
  • Soveral G; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal. teresa@ff.ulisboa.pt.
Int J Mol Sci ; 19(1)2018 Jan 03.
Article in En | MEDLINE | ID: mdl-29301341
Aquaporins (AQPs) are transmembrane channels that facilitate water and glycerol permeation through cell membranes. Recently, the water channel AQP1 was suggested to contribute to endothelial homeostasis and cardiovascular health. Less is known about endothelial aquaglyceroporins expression and its implication in cardiovascular disease (CVD). We have previously used cultured human endothelial cells under a hypomethylating environment to study endothelial dysfunction and activation, a phenotype implicated in the establishment of atherosclerosis and CVD. Here, we used the same cell model to investigate aquaporin's expression and function in healthy or pro-atherogenic phenotype. We first confirmed key features of endothelium dysfunction and activation in our cell model, including an augmented endothelial transmigration under hypomethylation. Subsequently, we found AQP1 and AQP3 to be the most predominant AQPs accounting for water and glycerol fluxes, respectively, in the healthy endothelium. Moreover, endothelial hypomethylation led to decreased levels of AQP1 and impaired water permeability without affecting AQP3 and glycerol permeability. Furthermore, TNF-α treatment-induced AQP1 downregulation suggesting that the inflammatory NF-κB signaling pathway mediates AQP1 transcriptional repression in a pro-atherogenic endothelium, a possibility that warrants further investigation. In conclusion, our results add further support to AQP1 as a candidate player in the setting of endothelial dysfunction and CVD.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Aquaporins / Atherosclerosis / Human Umbilical Vein Endothelial Cells Type of study: Prognostic_studies Limits: Humans Language: En Year: 2018 Type: Article

Full text: 1 Database: MEDLINE Main subject: Aquaporins / Atherosclerosis / Human Umbilical Vein Endothelial Cells Type of study: Prognostic_studies Limits: Humans Language: En Year: 2018 Type: Article