Your browser doesn't support javascript.
loading
Improved spatial localization in magnetic resonance spectroscopic imaging with two-dimensional PSF-Choice encoding.
Zhang, Shelley HuaLei; Maier, Stephan E; Panych, Lawrence P.
Affiliation
  • Zhang SH; Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States. Electronic address: shelleyzhang@gmail.com.
  • Maier SE; Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden. Electronic address: stephan@bwh.harvard.edu.
  • Panych LP; Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States. Electronic address: panych@bwh.harvard.edu.
J Magn Reson ; 290: 18-28, 2018 05.
Article in En | MEDLINE | ID: mdl-29547794
ABSTRACT

PURPOSE:

Magnetic resonance spectroscopic imaging (MRSI), under low-spatial resolution settings, often suffers signal contamination from neighboring voxels due to ringing artifacts. Spatial localization can be improved by constraining the point-spread-function (PSF). Here the effectiveness of the two-dimensional PSF-Choice technique in providing improved spatial localization for MRSI is demonstrated. THEORY AND

METHODS:

The PSF-Choice technique constrains the PSF to a desired shape by manipulating the weighting of RF excitation pulse throughout phase-encode steps. Based on a Point REsolved SpectroScopy (PRESS)-type sequence, PSF-Choice encoding was implemented along two dimensions to excite a two-dimensional Gaussian profile, by replacing the usual RF excitation pulse with a train of pulses that is modified at each phase-encoding step. The method was proven mathematically, and demonstrated experimentally in phantoms containing prostate relevant metabolic compounds of choline, creatine and citrate.

RESULTS:

Using a dedicated prostate-mimicking spectroscopy phantom surrounded by oil, it was found that there is significantly less signal contamination from oil for PSF-Choice encoding compared with standard phase encoding. In particular, with standard phase encoding, there was a significant difference (p = 0.014) between ratios of Choline + Creatine to Citrate for voxels well within the phantom compared to voxels within the phantom but near the boundary with oil. The ratios in boundary voxels were also significantly different (p = 0.035) from reference values obtained using the prostate phantom with no oil present. In contrast, no significant differences were found in comparisons of these ratios when encoding with PSF-Choice.

CONCLUSION:

The PSF-Choice scheme applied along two dimensions produces MR spectroscopic images with substantially reduced truncation artifacts and spectral contamination.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Magnetic Resonance Imaging Language: En Year: 2018 Type: Article

Full text: 1 Database: MEDLINE Main subject: Magnetic Resonance Imaging Language: En Year: 2018 Type: Article