Your browser doesn't support javascript.
loading
Electrochemical Formation of Divalent Samarium Cation and Its Characteristics in LiCl-KCl Melt.
Bae, Sang-Eun; Jung, Tae Sub; Cho, Young-Hwan; Kim, Jong-Yun; Kwak, Kyungwon; Park, Tae-Hong.
Affiliation
  • Bae SE; Nuclear Chemistry Research Division , Korea Atomic Energy Research Institute , 989-111 Daedeok-daero , Yuseong-gu , Daejeon 34057 , Korea.
  • Jung TS; Department of Radiochemistry & Nuclear Nonproliferation , University of Science and Technology , 217 Gajeong-ro Yuseong-gu , Daejeon 34057 , Korea.
  • Cho YH; Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) , Korea University , Seoul 02841 , Korea.
  • Kim JY; Department of Chemistry , Korea University , Seoul 02842 , Korea.
  • Kwak K; Nuclear Chemistry Research Division , Korea Atomic Energy Research Institute , 989-111 Daedeok-daero , Yuseong-gu , Daejeon 34057 , Korea.
  • Park TH; Nuclear Chemistry Research Division , Korea Atomic Energy Research Institute , 989-111 Daedeok-daero , Yuseong-gu , Daejeon 34057 , Korea.
Inorg Chem ; 57(14): 8299-8306, 2018 Jul 16.
Article in En | MEDLINE | ID: mdl-29952559
ABSTRACT
The electrochemical reduction of trivalent samarium in a LiCl-KCl eutectic melt produced highly stable divalent samarium, whose electrochemical properties and electronic structure in the molten salt were investigated using cyclic voltammetry, UV-vis absorption spectroscopy, laser-induced emission spectroscopy, and density functional theory (DFT) calculations. Diffusion coefficients of Sm2+ and Sm3+ were electrochemically measured to be 0.92 × 10-5 and 1.10 × 10-5 cm2/s, respectively, and the standard apparent potential of the Sm2+/3+ couple was estimated to be -0.82 V vs Ag|Ag+ at 450 °C. The spectroelectrochemical study demonstrated that the redox behavior of the samarium cations obeys the Nernst equation ( E°' = -0.83 V, n = 1) and the trivalent samarium cation was successfully converted to the divalent cation having characteristic absorption bands at 380 and 530 nm with molar absorptivity values of 1470 and 810 M-1 cm-1, respectively. Density function theory calculations for the divalent samarium complex revealed that the absorption signals originated from the 4f6 to 4f55d1 transitions. Additionally, laser-induced emission measurements for the Sm cations in the LiCl-KCl matrix showed that the Sm3+ ion in the LiCl-KCl melt at 450 °C emitted an orange color of fluorescence, whereas a red colored emission was observed from the Sm2+ ion in the solidified LCl-KCl salt at room temperature.

Full text: 1 Database: MEDLINE Language: En Year: 2018 Type: Article

Full text: 1 Database: MEDLINE Language: En Year: 2018 Type: Article