Your browser doesn't support javascript.
loading
Controlled p-type substitutional doping in large-area monolayer WSe2 crystals grown by chemical vapor deposition.
Pandey, Sushil Kumar; Alsalman, Hussain; Azadani, Javad G; Izquierdo, Nezhueyotl; Low, Tony; Campbell, Stephen A.
Affiliation
  • Pandey SK; Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street, Minneapolis, Minnesota 55455, USA. campb001@umn.edu.
Nanoscale ; 10(45): 21374-21385, 2018 Dec 07.
Article in En | MEDLINE | ID: mdl-30427027
ABSTRACT
Tungsten diselenide (WSe2) is a particularly interesting 2D material due to its p-type conductivity. Here we report a systematic single-step process to optimize crystal size by variation of multiple growth parameters resulting in hexagonal single crystals up to 165 µm wide. We then show that these large single crystals can be controllably in situ doped with the acceptor Niobium (Nb). First principles calculations suggest that substitutional Nb doping of W would yield p-doping with no gap trap states. When used as the active layer of a field effect transistor (FET), doped crystals exhibit conventional p-type behavior, rather than the ambipolar behaviour seen in undoped WSe2 FETs. Nb-doped WSe2 FETs yield a maximum field effect mobility of 116 cm2 V-1 s-1, slightly higher than its undoped counterpart, with an on/off ratio of 106. Doping reduces the contact resistance of WSe2, reaching a minimum value of 0.55 kΩµm in WSe2 FETs. The areal density of holes in Nb-doped WSe2 is approximately double that of undoped WSe2, indicating that Nb doping is working as an effective acceptor. Doping concentration can be controlled over several orders of magnitudes, allowing it to be used to control FET threshold voltage, FET off-state leakage, and contact resistance.

Full text: 1 Database: MEDLINE Language: En Year: 2018 Type: Article

Full text: 1 Database: MEDLINE Language: En Year: 2018 Type: Article