Your browser doesn't support javascript.
loading
Conformational Effects of Pt-Shells on Nanostructures and Corresponding Oxygen Reduction Reaction Activity of Au-Cluster-Decorated NiOx@Pt Nanocatalysts.
Bhalothia, Dinesh; Fan, Yu-Jui; Lai, Yen-Chun; Yang, Ya-Tang; Yang, Yaw-Wen; Lee, Chih-Hao; Chen, Tsan-Yao.
Affiliation
  • Bhalothia D; Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
  • Fan YJ; Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
  • Lai YC; School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
  • Yang YT; Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
  • Yang YW; National Synchrotron Radiation Research Center, Hsinchu 30007, Taiwan.
  • Lee CH; Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
  • Chen TY; National Synchrotron Radiation Research Center, Hsinchu 30007, Taiwan.
Nanomaterials (Basel) ; 9(7)2019 Jul 11.
Article in En | MEDLINE | ID: mdl-31336802
ABSTRACT
Herein, ternary metallic nanocatalysts (NCs) consisting of Au clusters decorated with a Pt shell and a Ni oxide core underneath (called NPA) on carbon nanotube (CNT) support were synthesized by combining adsorption, precipitation, and chemical reduction methods. By a retrospective investigation of the physical structure and electrochemical results, we elucidated the effects of Pt/Ni ratios (0.4 and 1.0) and Au contents (2 and 9 wt.%) on the nanostructure and corresponding oxygen reduction reaction (ORR) activity of the NPA NCs. We found that the ORR activity of NPA NCs was mainly dominated by the Pt-shell thickness which regulated the depth and size of the surface decorated with Au clusters. In the optimal case, NPA-1004006 (with a Pt/Ni of 0.4 and Au of ~2 wt.%) showed a kinetic current (JK) of 75.02 mA cm-2 which was nearly 17-times better than that (4.37 mA cm-2) of the commercial Johnson Matthey-Pt/C (20 wt.% Pt) catalyst at 0.85 V vs. the reference hydrogen electrode. Such a high JK value resulted in substantial improvements in both the specific activity (by ~53-fold) and mass activity (by nearly 10-fold) in the same benchmark target. Those scenarios rationalize that ORR activity can be substantially improved by a syngeneic effect at heterogeneous interfaces among nanometer-sized NiOx, Pt, and Au clusters on the NC surface.
Key words