Your browser doesn't support javascript.
loading
Identification of metabolomic changes in horse plasma after racing by liquid chromatography-high resolution mass spectrometry as a strategy for doping testing.
Ueda, Toshiki; Tozaki, Teruaki; Nozawa, Satoshi; Kinoshita, Kenji; Gawahara, Hitoshi.
Affiliation
  • Ueda T; Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan.
  • Tozaki T; Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan.
  • Nozawa S; Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan.
  • Kinoshita K; Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan.
  • Gawahara H; Drug Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan.
J Equine Sci ; 30(3): 55-61, 2019 Sep.
Article in En | MEDLINE | ID: mdl-31592223
ABSTRACT
Recently, the illegal use of novel technologies, such as gene and cell therapies, has become a great concern for the horseracing industry. As a potential way to control this, metabolomics approaches that comprehensively analyze metabolites in biological samples have been gaining attention. However, it may be difficult to identify metabolic biomarkers for doping because physiological conditions generally differ between resting and exercise states in horses. To understand the metabolic differences in horse plasma between the resting state at training centres and the sample collection stage after racing for doping test (SAD), we took plasma samples from these two stages (n=30 for each stage) and compared the metabolites present in these samples by liquid chromatography-high resolution mass spectrometry. This analysis identified 5,010 peaks, of which 1,256 peaks (approximately 25%) were annotated using KEGG analysis. Principal component analysis showed that the resting state and SAD groups had entirely different metabolite compositions. In particular, the levels of inosine, xanthosine, uric acid, and allantoin, which are induced by extensive exercise, were significantly increased in the SAD group. In addition, many metabolites not affected by extensive exercise were also identified. These results will contribute to the discovery of biomarkers for detecting doping substances that cannot be detected by conventional methods.
Key words

Full text: 1 Database: MEDLINE Type of study: Diagnostic_studies Language: En Year: 2019 Type: Article

Full text: 1 Database: MEDLINE Type of study: Diagnostic_studies Language: En Year: 2019 Type: Article