Your browser doesn't support javascript.
loading
Hereditary hemochromatosis disrupts uric acid homeostasis and causes hyperuricemia via altered expression/activity of xanthine oxidase and ABCG2.
Ristic, Bojana; Sivaprakasam, Sathish; Narayanan, Monisha; Ganapathy, Vadivel.
Affiliation
  • Ristic B; Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A.
  • Sivaprakasam S; Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A.
  • Narayanan M; Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A.
  • Ganapathy V; Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A.
Biochem J ; 477(8): 1499-1513, 2020 04 30.
Article in En | MEDLINE | ID: mdl-32239172
ABSTRACT
Hereditary hemochromatosis (HH) is mostly caused by mutations in the iron-regulatory gene HFE. The disease is associated with iron overload, resulting in liver cirrhosis/cancer, cardiomegaly, kidney dysfunction, diabetes, and arthritis. Fe2+-induced oxidative damage is suspected in the etiology of these symptoms. Here we examined, using Hfe-/- mice, whether disruption of uric acid (UA) homeostasis plays any role in HH-associated arthritis. We detected elevated levels of UA in serum and intestine in Hfe-/- mice compared with controls. Though the expression of xanthine oxidase, which generates UA, was not different in liver and intestine between wild type and Hfe-/- mice, the enzymatic activity was higher in Hfe-/- mice. We then examined various transporters involved in UA absorption/excretion. Glut9 expression did not change; however, there was an increase in Mrp4 and a decrease in Abcg2 in Hfe-/- mice. As ABCG2 mediates intestinal excretion of UA and mutations in ABCG2 cause hyperuricemia, we examined the potential connection between iron and ABCG2. We found p53-responsive elements in hABCG2 promoter and confirmed with chromatin immunoprecipitation that p53 binds to this promoter. p53 protein was reduced in Hfe-/- mouse intestine. p53 is a heme-binding protein and p53-heme complex is subjected to proteasomal degradation. We conclude that iron/heme overload in HH increases xanthine oxidase activity and also promotes p53 degradation resulting in decreased ABCG2 expression. As a result, systemic UA production is increased and intestinal excretion of UA via ABCG2 is decreased, causing serum and tissue accumulation of UA, a potential factor in the etiology of HH-associated arthritis.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Uric Acid / Xanthine Oxidase / Hyperuricemia / ATP Binding Cassette Transporter, Subfamily G, Member 2 / Hemochromatosis Type of study: Etiology_studies Limits: Animals / Female / Humans / Male Language: En Year: 2020 Type: Article

Full text: 1 Database: MEDLINE Main subject: Uric Acid / Xanthine Oxidase / Hyperuricemia / ATP Binding Cassette Transporter, Subfamily G, Member 2 / Hemochromatosis Type of study: Etiology_studies Limits: Animals / Female / Humans / Male Language: En Year: 2020 Type: Article