Your browser doesn't support javascript.
loading
Retinal homeostasis and metformin-induced protection are not affected by retina-specific Pparδ knockout.
Xu, Lei; Brown, Emily E; Santiago, Clayton P; Keuthan, Casey J; Lobanova, Ekaterina; Ash, John D.
Affiliation
  • Xu L; Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA.
  • Brown EE; Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA.
  • Santiago CP; Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA.
  • Keuthan CJ; Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA.
  • Lobanova E; Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, 32610, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA.
  • Ash JD; Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA. Electronic address: jash@ufl.edu.
Redox Biol ; 37: 101700, 2020 10.
Article in En | MEDLINE | ID: mdl-32863184
ABSTRACT
Peroxisome proliferator-activated receptors (PPARs) are a family of three nuclear hormone receptors (PPARα, PPARδ, and PPARγ) that are known to regulate expression of lipid metabolism and oxidative stress genes. Given their role in reducing oxidative stress in a variety of tissues, these genes are likely important for retinal homeostasis. This hypothesis has been further supported by recent studies suggesting that PPAR-activating drugs are protective against retinal degenerations. The objective of the present study was to determine the role of PPARδ in the neuroretina. RNA-seq data show that Pparα and Pparδ are both expressed in the retina, but that Pparδ is expressed at 4-fold higher levels. Single-cell RNAseq data show that Pparδ is broadly expressed in all retinal cell types. To determine the importance of Pparδ to the retina, we generated retina-specific Pparδ knockout mice. We found that deletion of Pparδ had a minimal effect on retinal function or morphology out to 12 months of age and did not increase retinal sensitivity to oxidative stress induced by exposure to bright light. While data show that PPARδ levels were increased by the drug metformin, PPARδ was not necessary for metformin-induced protection from light damage. These data suggest that Pparδ either has a redundant function with Pparα or is not essential for normal neuroretina function or resistance to oxidative stress.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: PPAR delta / Metformin Limits: Animals Language: En Year: 2020 Type: Article

Full text: 1 Database: MEDLINE Main subject: PPAR delta / Metformin Limits: Animals Language: En Year: 2020 Type: Article