Your browser doesn't support javascript.
loading
Proteomics of Muscle Microdialysates Identifies Potential Circulating Biomarkers in Facioscapulohumeral Muscular Dystrophy.
Corasolla Carregari, Victor; Monforte, Mauro; Di Maio, Giuseppe; Pieroni, Luisa; Urbani, Andrea; Ricci, Enzo; Tasca, Giorgio.
Affiliation
  • Corasolla Carregari V; Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
  • Monforte M; Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
  • Di Maio G; Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
  • Pieroni L; Unità di Proteomica e Metabolomica, Fondazione S. Lucia IRCCS, 00179 Roma, Italy.
  • Urbani A; Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
  • Ricci E; Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
  • Tasca G; Istituto di Neurologia, Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
Int J Mol Sci ; 22(1)2020 Dec 30.
Article in En | MEDLINE | ID: mdl-33396627
ABSTRACT
Facioscapulohumeral muscular dystrophy (FSHD) is caused by a complex epigenetic mechanism finally leading to the misexpression of DUX4 in skeletal muscle. Detecting DUX4 and quantifying disease progression in FSHD is extremely challenging, thus increasing the need for surrogate biomarkers. We applied a shotgun proteomic approach with two different setups to analyze the protein repertoire of interstitial fluids obtained from 20 muscles in different disease stages classified by magnetic resonance imaging (MRI) and serum samples from 10 FSHD patients. A total of 1156 proteins were identified in the microdialysates by data independent acquisition, 130 of which only found in muscles in active disease stage. Proteomic profiles were able to distinguish FSHD patients from controls. Two innate immunity mediators (S100-A8 and A9) and Dermcidin were upregulated in muscles with active disease and selectively present in the sera of FSHD patients. Structural muscle and plasminogen pathway proteins were downregulated. Together with the upstream inhibition of myogenic factors, this suggests defective muscle regeneration and increased fibrosis in early/active FSHD. Our MRI targeted exploratory approach confirmed that inflammatory response has a prominent role, together with impaired muscle regeneration, before clear muscle wasting occurs. We also identified three proteins as tissue and possibly circulating biomarkers in FSHD.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Biomarkers / Dialysis Solutions / Microdialysis / Muscle, Skeletal / Muscular Dystrophy, Facioscapulohumeral / Proteomics Type of study: Diagnostic_studies / Prognostic_studies Limits: Adolescent / Adult / Female / Humans / Male / Middle aged Language: En Year: 2020 Type: Article

Full text: 1 Database: MEDLINE Main subject: Biomarkers / Dialysis Solutions / Microdialysis / Muscle, Skeletal / Muscular Dystrophy, Facioscapulohumeral / Proteomics Type of study: Diagnostic_studies / Prognostic_studies Limits: Adolescent / Adult / Female / Humans / Male / Middle aged Language: En Year: 2020 Type: Article