Your browser doesn't support javascript.
loading
3,3'-Diindolylmethane Exhibits Significant Metabolism after Oral Dosing in Humans.
Vermillion Maier, Monica L; Siddens, Lisbeth K; Uesugi, Sandra L; Choi, Jaewoo; Leonard, Scott W; Pennington, Jamie M; Tilton, Susan C; Smith, Jordan N; Ho, Emily; Chow, H H Sherry; Nguyen, Bach D; Kolluri, Siva K; Williams, David E.
Affiliation
  • Vermillion Maier ML; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Siddens LK; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Uesugi SL; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Choi J; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Leonard SW; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Pennington JM; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Tilton SC; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Smith JN; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Ho E; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Chow HHS; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Nguyen BD; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Kolluri SK; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
  • Williams DE; Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Tox
Drug Metab Dispos ; 49(8): 694-705, 2021 08.
Article in En | MEDLINE | ID: mdl-34035125
ABSTRACT
3,3'-Diindolylmethane (DIM), a major phytochemical derived from ingestion of cruciferous vegetables, is also a dietary supplement. In preclinical models, DIM is an effective cancer chemopreventive agent and has been studied in a number of clinical trials. Previous pharmacokinetic studies in preclinical and clinical models have not reported DIM metabolites in plasma or urine after oral dosing, and the pharmacological actions of DIM on target tissues is assumed to be solely via the parent compound. Seven subjects (6 males and 1 female) ranging from 26-65 years of age, on a cruciferous vegetable-restricted diet prior to and during the study, took 2 BioResponse DIM 150-mg capsules (45.3 mg DIM/capsule) every evening for one week with a final dose the morning of the first blood draw. A complete time course was performed with plasma and urine collected over 48 hours and analyzed by UPLC-MS/MS. In addition to parent DIM, two monohydroxylated metabolites and 1 dihydroxylated metabolite, along with their sulfate and glucuronide conjugates, were present in both plasma and urine. Results reported here are indicative of significant phase 1 and phase 2 metabolism and differ from previous pharmacokinetic studies in rodents and humans, which reported only parent DIM present after oral administration. 3-((1H-indole-3-yl)methyl)indolin-2-one, identified as one of the monohydroxylated products, exhibited greater potency and efficacy as an aryl hydrocarbon receptor agonist when tested in a xenobiotic response element-luciferase reporter assay using Hepa1 cells. In addition to competitive phytochemical-drug adverse reactions, additional metabolites may exhibit pharmacological activity highlighting the importance of further characterization of DIM metabolism in humans. SIGNIFICANCE STATEMENT 3,3'-Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, is an effective cancer chemopreventive agent in preclinical models and a popular dietary supplement currently in clinical trials. Pharmacokinetic studies to date have found little or no metabolites of DIM in plasma or urine. In marked contrast, we demonstrate rapid appearance of mono- and dihydroxylated metabolites in human plasma and urine as well as their sulfate and glucuronide conjugates. The 3-((1H-indole-3-yl)methyl)indolin-2-one metabolite exhibited significant aryl hydrocarbon receptor agonist activity, emphasizing the need for further characterization of the pharmacological properties of DIM metabolites.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Indoles Type of study: Prognostic_studies Limits: Female / Humans / Male / Middle aged Language: En Year: 2021 Type: Article

Full text: 1 Database: MEDLINE Main subject: Indoles Type of study: Prognostic_studies Limits: Female / Humans / Male / Middle aged Language: En Year: 2021 Type: Article