Your browser doesn't support javascript.
loading
The BET Protein Inhibitor Apabetalone Rescues Diabetes-Induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1.
Mohammed, Shafeeq A; Albiero, Mattia; Ambrosini, Samuele; Gorica, Era; Karsai, Gergely; Caravaggi, Carlo M; Masi, Stefano; Camici, Giovanni G; Wenzl, Florian A; Calderone, Vincenzo; Madeddu, Paolo; Sciarretta, Sebastiano; Matter, Christian M; Spinetti, Gaia; Lüscher, Thomas F; Ruschitzka, Frank; Costantino, Sarah; Fadini, Gian Paolo; Paneni, Francesco.
Affiliation
  • Mohammed SA; Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.
  • Albiero M; Department of Medicine, University of Padua, Padova, Italy.
  • Ambrosini S; Veneto Institute of Molecular Medicine, Padova, Italy.
  • Gorica E; Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.
  • Karsai G; Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.
  • Caravaggi CM; Department of Pharmacy, University of Pisa, Pisa, Italy.
  • Masi S; Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland.
  • Camici GG; Diabetic Foot Department, IRCCS MultiMedica, Milan, Italy.
  • Wenzl FA; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
  • Calderone V; Institute of Cardiovascular Science, University College London, London, United Kingdom.
  • Madeddu P; Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.
  • Sciarretta S; University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.
  • Matter CM; Department of Research and Education, University Hospital Zurich, Zürich, Switzerland.
  • Spinetti G; Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.
  • Lüscher TF; Department of Pharmacy, University of Pisa, Pisa, Italy.
  • Ruschitzka F; Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom.
  • Costantino S; IRCCS Neuromed, Pozzilli, Italy.
  • Fadini GP; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
  • Paneni F; Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.
Antioxid Redox Signal ; 36(10-12): 667-684, 2022 04.
Article in En | MEDLINE | ID: mdl-34913726
ABSTRACT

Aims:

Therapeutic modulation of blood vessel growth holds promise for the prevention of limb ischemia in diabetic (DM) patients with peripheral artery disease (PAD). Epigenetic changes, namely, posttranslational histone modifications, participate in angiogenic response suggesting that chromatin-modifying drugs could be beneficial in this setting. Apabetalone (APA), a selective inhibitor of bromodomain (BRD) and bromodomain and extraterminal containing protein family (BET) proteins, prevents bromodomain-containing protein 4 (BRD4) interactions with chromatin thus modulating transcriptional programs in different organs. We sought to investigate whether APA affects angiogenic response in diabetes.

Results:

Compared with vehicle, APA restored tube formation and migration in human aortic endothelial cells (HAECs) exposed to high-glucose (HG) levels. Expression profiling of angiogenesis genes showed that APA prevents HG-induced upregulation of the antiangiogenic molecule thrombospondin-1 (THBS1). ChIP-seq and chromatin immunoprecipitation (ChIP) assays in HG-treated HAECs showed the enrichment of both BRD4 and active marks (H3K27ac) on THBS1 promoter, whereas BRD4 inhibition by APA prevented chromatin accessibility and THBS1 transcription. Mechanistically, we show that THBS1 inhibits angiogenesis by suppressing vascular endothelial growth factor A (VEGFA) signaling, while APA prevents these detrimental changes. In diabetic mice with hind limb ischemia, epigenetic editing by APA restored the THBS1/VEGFA axis, thus improving limb vascularization and perfusion, compared with vehicle-treated animals. Finally, epigenetic regulation of THBS1 by BRD4/H3K27ac was also reported in DM patients with PAD compared with nondiabetic controls. Innovation This is the first study showing that BET protein inhibition by APA restores angiogenic response in experimental diabetes.

Conclusions:

Our findings set the stage for preclinical studies and exploratory clinical trials testing APA in diabetic PAD. Antioxid. Redox Signal. 36, 667-684.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Transcription Factors / Diabetes Mellitus, Experimental Limits: Animals / Humans Language: En Year: 2022 Type: Article

Full text: 1 Database: MEDLINE Main subject: Transcription Factors / Diabetes Mellitus, Experimental Limits: Animals / Humans Language: En Year: 2022 Type: Article