Your browser doesn't support javascript.
loading
Combined Treatment of Monopolar and Bipolar Radiofrequency Increases Skin Elasticity by Decreasing the Accumulation of Advanced Glycated End Products in Aged Animal Skin.
Oh, Seyeon; Rho, Nark-Kyoung; Byun, Kyung-A; Yang, Jin Young; Sun, Hye Jin; Jang, Miran; Kang, Donghwan; Son, Kuk Hui; Byun, Kyunghee.
Affiliation
  • Oh S; Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea.
  • Rho NK; Leaders Aesthetic Laser & Cosmetic Surgery Center, Seoul 06014, Korea.
  • Byun KA; Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea.
  • Yang JY; Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea.
  • Sun HJ; Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea.
  • Jang M; Jeisys Medical Inc., Seoul 08501, Korea.
  • Kang D; Jeisys Medical Inc., Seoul 08501, Korea.
  • Son KH; Jeisys Medical Inc., Seoul 08501, Korea.
  • Byun K; Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in En | MEDLINE | ID: mdl-35328415
ABSTRACT
It is well known that skin aging is related to the destruction of collagen and elastin fibers by metalloproteinases (MMPs). Aged fibroblasts have a decreased ability to synthesize collagen and elastin. Nuclear factor erythroid 2-related factor 2 (NRF2) involves glyoxalase (GLO) activation, which inhibits the production of advanced glycated end products (AGE) and the expression of its receptor (RAGE). RAGE increases nuclear transcription factor-kappa B (NF-κB), which upregulates MMPs and decreases skin elasticity. NRF2 also decreases M1 macrophages, which secrete tumor necrosis factor-alpha (TNF-α), thereby decreasing AGE production. It is well known that radiofrequency (RF) decreases skin elasticity by increasing collagen synthesis. We evaluated whether RF increases skin elasticity via NRF2/GLO and whether they decrease AGE and RAGE expression in aged animal skin. We also compared the effects of RF based on the modes (monopolar or bipolar) or the combination used. In aged skin, NRF2, GLO-1, and M2 macrophage expression was decreased, and their expression increased when RF was applied. M1 and TNF-α demonstrated increased expression in the aged skin and decreased expression after RF application. AGE accumulation and RAGE, NF-κB, and MMP2/3/9 expression were increased in the aged skin, and they were decreased by RF. The papillary and reticular fibroblast markers showed decreased expression in young skin and increased expression in aged skin. The densities of collagen and elastin fiber in the aged skin were low, and they were increased by RF. In conclusion, RF leads to increased collagen and elastin fibers by increasing NRF2/GLO-1 and modulating M1/M2 polarization, which leads to decreased AGE and RAGE and, consequently, decreased NF-κB, which eventually slows collagen and elastin destruction. RF also leads to increased collagen and elastin fiber synthesis by increasing papillary and reticular fibroblast expression.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Skin Aging / Lactoylglutathione Lyase Limits: Animals Language: En Year: 2022 Type: Article

Full text: 1 Database: MEDLINE Main subject: Skin Aging / Lactoylglutathione Lyase Limits: Animals Language: En Year: 2022 Type: Article