Your browser doesn't support javascript.
loading
Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals.
Abécassis, Benjamin; Greenberg, Matthew W; Bal, Vivekananda; McMurtry, Brandon M; Campos, Michael P; Guillemeney, Lilian; Mahler, Benoit; Prevost, Sylvain; Sharpnack, Lewis; Hendricks, Mark P; DeRosha, Daniel; Bennett, Ellie; Saenz, Natalie; Peters, Baron; Owen, Jonathan S.
Affiliation
  • Abécassis B; Laboratoire de Chimie, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1 F69342 Lyon France.
  • Greenberg MW; Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu.
  • Bal V; Department of Chemical Engineering, University of Illinois Urbana-Champaign Illinois 10027 USA.
  • McMurtry BM; Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu.
  • Campos MP; Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu.
  • Guillemeney L; Laboratoire de Chimie, ENS de Lyon, CNRS, Université Claude Bernard Lyon 1 F69342 Lyon France.
  • Mahler B; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière F-69622 Villeurbanne France.
  • Prevost S; Institut Laue-Langevin 71 Avenue des Martyrs 38042 Grenoble France.
  • Sharpnack L; Department of Earth Science, University of California Santa Barbara CA 93106 USA.
  • Hendricks MP; Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu.
  • DeRosha D; Department of Chemistry, Whitman College Walla Walla WA 99362 USA.
  • Bennett E; Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu.
  • Saenz N; Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu.
  • Peters B; Department of Chemistry, Columbia University New York New York 10027 USA jso2115@columbia.edu.
  • Owen JS; Department of Chemical Engineering, University of Illinois Urbana-Champaign Illinois 10027 USA.
Chem Sci ; 13(17): 4977-4983, 2022 May 04.
Article in En | MEDLINE | ID: mdl-35655873
ABSTRACT
Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid "burst of nucleation" (La Mer, JACS, 1950, 72(11), 4847-4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and 13C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (k G) across all three precursors. However, the magnitude of the k G and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results.