Your browser doesn't support javascript.
loading
Proton transfer activity of the reconstituted Mycobacterium tuberculosis MmpL3 is modulated by substrate mimics and inhibitors.
Stevens, Casey M; Babii, Svitlana O; Pandya, Amitkumar N; Li, Wei; Li, Yupeng; Mehla, Jitender; Scott, Robyn; Hegde, Pooja; Prathipati, Pavan K; Acharya, Atanu; Liu, Jinchan; Gumbart, James C; North, Jeffrey; Jackson, Mary; Zgurskaya, Helen I.
Affiliation
  • Stevens CM; Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019.
  • Babii SO; Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019.
  • Pandya AN; School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178.
  • Li W; Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523.
  • Li Y; College of Chemistry, Jilin University, 130012 Changchun, China.
  • Mehla J; Tang Aoqing Honors Program in Science, Jilin University, 130012 Changchun, China.
  • Scott R; School of Physics, Georgia Institute of Technology, Atlanta, GA 30332.
  • Hegde P; Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019.
  • Prathipati PK; School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178.
  • Acharya A; School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178.
  • Liu J; School of Pharmacy & Health Professions, Department of Pharmacy Sciences, Creighton University, Omaha, NE 68178.
  • Gumbart JC; School of Physics, Georgia Institute of Technology, Atlanta, GA 30332.
  • North J; College of Chemistry, Jilin University, 130012 Changchun, China.
  • Jackson M; Tang Aoqing Honors Program in Science, Jilin University, 130012 Changchun, China.
  • Zgurskaya HI; School of Physics, Georgia Institute of Technology, Atlanta, GA 30332.
Proc Natl Acad Sci U S A ; 119(30): e2113963119, 2022 07 26.
Article in En | MEDLINE | ID: mdl-35858440
ABSTRACT
Transporters belonging to the Resistance-Nodulation-cell Division (RND) superfamily of proteins such as Mycobacterium tuberculosis MmpL3 and its analogs are the focus of intense investigations due to their importance in the physiology of Corynebacterium-Mycobacterium-Nocardia species and antimycobacterial drug discovery. These transporters deliver trehalose monomycolates, the precursors of major lipids of the outer membrane, to the periplasm by a proton motive force-dependent mechanism. In this study, we successfully purified, from native membranes, the full-length and the C-terminal truncated M. tuberculosis MmpL3 and Corynebacterium glutamicum CmpL1 proteins and reconstituted them into proteoliposomes. We also generated a series of substrate mimics and inhibitors specific to these transporters, analyzed their activities in the reconstituted proteoliposomes, and carried out molecular dynamics simulations of the model MmpL3 transporter at different pH. We found that all reconstituted proteins facilitate proton translocation across a phospholipid bilayer, but MmpL3 and CmpL1 differ dramatically in their responses to pH and interactions with substrate mimics and indole-2-carboxamide inhibitors. Our results further suggest that some inhibitors abolish the transport activity of MmpL3 and CmpL1 by inhibition of proton translocation.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Membrane Transport Proteins / Bacterial Proteins Language: En Year: 2022 Type: Article

Full text: 1 Database: MEDLINE Main subject: Membrane Transport Proteins / Bacterial Proteins Language: En Year: 2022 Type: Article