A neural circuit for the suppression of feeding under persistent pain.
Nat Metab
; 4(12): 1746-1755, 2022 12.
Article
in En
| MEDLINE
| ID: mdl-36443522
In humans, persistent pain often leads to decreased appetite. However, the neural circuits underlying this behaviour remain unclear. Here, we show that a circuit arising from glutamatergic neurons in the anterior cingulate cortex (GluACC) projects to glutamatergic neurons in the lateral hypothalamic area (GluLHA) to blunt food intake in a mouse model of persistent pain. In turn, these GluLHA neurons project to pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus (POMCArc), a well-known neuronal population involved in decreasing food intake. In vivo calcium imaging and multi-tetrode electrophysiological recordings reveal that the GluACC â GluLHA â Arc circuit is activated in mouse models of persistent pain and is accompanied by decreased feeding behaviour in both males and females. Inhibition of this circuit using chemogenetics can alleviate the feeding suppression symptoms. Our study indicates that the GluACC â GluLHA â Arc circuit is involved in driving the suppression of feeding under persistent pain through POMC neuronal activity. This previously unrecognized pathway could be explored as a potential target for pain-associated diseases.
Full text:
1
Database:
MEDLINE
Main subject:
Pro-Opiomelanocortin
/
Feeding Behavior
Limits:
Animals
/
Female
/
Humans
/
Male
Language:
En
Year:
2022
Type:
Article