Your browser doesn't support javascript.
loading
Multi-omic characterization of the maize GPI synthesis mutant gwt1 with defects in kernel development.
Tian, Runmiao; Jiang, Jianjun; Bo, Shirong; Zhang, Hui; Zhang, Xuehai; Hearne, Sarah Jane; Tang, Jihua; Ding, Dong; Fu, Zhiyuan.
Affiliation
  • Tian R; Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
  • Jiang J; Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
  • Bo S; Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
  • Zhang H; Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
  • Zhang X; Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
  • Hearne SJ; CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco, Edo. De Mexico, 56237, Mexico.
  • Tang J; Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
  • Ding D; The Shennong Laboratory, Zhengzhou, 450002, China.
  • Fu Z; Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China. dingdong0216@hotmail.com.
BMC Plant Biol ; 23(1): 191, 2023 Apr 10.
Article in En | MEDLINE | ID: mdl-37038106
ABSTRACT

BACKGROUND:

Glycosylphosphatidylinositol (GPI) and GPI-anchored proteins (GAPs) are important for cell wall formation and reproductive development in Arabidopsis. However, monocot counterparts that function in kernel endosperm development have yet to be discovered. Here, we performed a multi-omic analysis to explore the function of GPI related genes on kernel development in maize.

RESULTS:

In maize, 48 counterparts of human GPI synthesis and lipid remodeling genes were identified, in which null mutation of the glucosaminyl-phosphatidylinositol O-acyltransferase1 gene, ZmGWT1, caused a kernel mutant (named gwt1) with defects in the basal endosperm transport layer (BETL). We performed plasma membrane (PM) proteomics to characterize the potential GAPs involved in kernel development. In total, 4,981 proteins were successfully identified in 10-DAP gwt1 kernels of mutant and wild-type (WT), including 1,638 membrane-anchored proteins with different posttranslational modifications. Forty-seven of the 256 predicted GAPs were differentially accumulated between gwt1 and WT. Two predicted BETL-specific GAPs (Zm00001d018837 and Zm00001d049834), which kept similar abundance at general proteome but with significantly decreased abundance at membrane proteome in gwt1 were highlighted.

CONCLUSIONS:

Our results show the importance of GPI and GAPs for endosperm development and provide candidate genes for further investigation of the regulatory network in which ZmGWT1 participates.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Zea mays / Proteome Limits: Humans Language: En Year: 2023 Type: Article

Full text: 1 Database: MEDLINE Main subject: Zea mays / Proteome Limits: Humans Language: En Year: 2023 Type: Article