Your browser doesn't support javascript.
loading
An oncolytic poxvirus encoding hNIS, shows anti-tumor efficacy and allows tumor imaging in a liver cancer model.
Chaurasiya, Shyambabu; Valencia, Hannah; Zhang, Zhifang; Kim, Sang-In; Yang, Annie; Lu, Jianming; Woo, Yanghee; Warner, Susanne G; Ede, Nicholas J; Fong, Yuman.
Affiliation
  • Chaurasiya S; City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
  • Valencia H; City of Hope Comprehensive Cancer Center, Duarte, United States.
  • Zhang Z; City Of Hope National Medical Center, Duarte, California, United States.
  • Kim SI; City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
  • Yang A; City Of Hope National Medical Center, Duarte, California, United States.
  • Lu J; Beckman Research Institute of the City of Hope, Duarte, CA, United States.
  • Woo Y; City Of Hope National Medical Center, Duarte, CA, United States.
  • Warner SG; City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
  • Ede NJ; Imugene Ltd., Carlton, VIC, Australia.
  • Fong Y; City Of Hope Comprehensive Cancer Center, Duarte, CA, United States.
Mol Cancer Ther ; 2023 May 17.
Article in En | MEDLINE | ID: mdl-37196156
ABSTRACT
Oncolytic viruses (OVs) are live viruses that can selectively replicate in cancer cells. We have engineered an OV (CF33) to make it cancer-selective through the deletion of its J2R (thymidine kinase) gene. Additionally, this virus has been armed with a reporter gene, human sodium iodide symporter (hNIS), to facilitate non-invasive imaging of tumors using positron emission tomography (PET). In this study we evaluated the oncolytic properties of the virus (CF33-hNIS) in liver cancer model, and its usefulness in tumor imaging. The virus was found to efficiently kill liver cancer cells and the virus-mediated cell death exhibited characteristics of immunogenic death based on the analysis of 3 damage associate molecular patterns (DAMPs) calreticulin, ATP and HMGB1. Furthermore, local or systemic administration of a single dose of the virus showed anti-tumor efficacy against a liver cancer xenograft model in mice and significantly increased survival of treated mice. Lastly, PET scanning was performed following injection of the radioisotope I-124, for imaging of tumors, and a single dose of virus as low as 1E03 pfu, administered intratumorally (I.T.) or intravenously (I.V.), allowed for PET imaging of tumors. In conclusion, CF33-hNIS is safe and effective in controlling human tumor xenografts in nude mice, and it also facilitates non-invasive imaging of tumors.

Full text: 1 Database: MEDLINE Type of study: Prognostic_studies Language: En Year: 2023 Type: Article

Full text: 1 Database: MEDLINE Type of study: Prognostic_studies Language: En Year: 2023 Type: Article