Your browser doesn't support javascript.
loading
Hippocampal parvalbumin and perineuronal nets: Possible involvement in anxiety-like behavior in rats.
Fan, Zhixin; Gong, Xiayu; Xu, Hanfang; Qu, Yue; Li, Bozhi; Li, Lanxin; Yan, Yuqi; Wu, Lili; Yan, Can.
Affiliation
  • Fan Z; Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Gong X; Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Xu H; Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Qu Y; Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Li B; Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Li L; Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Yan Y; Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Wu L; Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
  • Yan C; Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
Hippocampus ; 34(3): 156-165, 2024 Mar.
Article in En | MEDLINE | ID: mdl-38100162
ABSTRACT
The excitatory-inhibitory imbalance has been considered an important mechanism underlying stress-related psychiatric disorders. In the present study, rats were exposed to 6 days of inescapable foot shock (IFS) to induce stress. The open field test and elevated plus maze test showed that IFS-exposed rats exhibited increased anxiety-like behavior. Immunofluorescence showed that IFS rats had a decreased density of GAD67-immunoreactive interneurons in the dorsal hippocampal CA1 region, while no significant change in the density of CaMKIIα-immunoreactive glutamatergic neurons was seen. We investigated the expression of different interneuron subtype markers, including parvalbumin (PV), somatostatin (SST), and calretinin (CR), and noted a marked decline in the density of PV-immunoreactive interneurons in the dorsal CA1 region of IFS rats. The perineuronal net (PNN) is a specialized extracellular matrix structure primarily around PV interneurons. We used Wisteria floribunda agglutinin lectin to label the PNNs and observed that IFS rats had an increased proportion of PNN-coated PV-positive interneurons in CA1. The number of PSD95-positive excitatory synaptic puncta on the soma of PNN-free PV-positive interneurons was significantly higher than that of PNN-coated PV-positive interneurons. Our findings suggest that the effect of IFS on the hippocampal GABAergic interneurons could be cell-type-specific. Loss of PV phenotype in the dorsal hippocampal CA1 region may contribute to anxiety in rats. The dysregulated PV-PNN relationship in CA1 after traumatic stress exposure might represent one of the neurobiological correlates of the observed anxiety-like behavior.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Parvalbumins / Neurons Limits: Animals / Humans Language: En Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Main subject: Parvalbumins / Neurons Limits: Animals / Humans Language: En Year: 2024 Type: Article