Your browser doesn't support javascript.
loading
Spacer Engineering Enables Fine-Tuned Thin Film Microstructure and Efficient Charge Transport for Ultrasensitive 2D Perovskite-Based Heterojunction Phototransistors and Optoelectronic Synapses.
Lai, Jing; Shi, Keli; Qiu, Beibei; Liang, Jufang; Liu, Haicui; Zhang, Weifeng; Yu, Gui.
Affiliation
  • Lai J; Key Laboratory of Solid-State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
  • Shi K; Key Laboratory of Solid-State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
  • Qiu B; Key Laboratory of Solid-State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
  • Liang J; Key Laboratory of Solid-State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
  • Liu H; Key Laboratory of Solid-State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China.
  • Zhang W; Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R China.
  • Yu G; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Small ; 20(22): e2310002, 2024 May.
Article in En | MEDLINE | ID: mdl-38109068
ABSTRACT
2D Ruddlesden-Popper phase layered perovskites (RPLPs) hold great promise for optoelectronic applications. In this study, a series of high-performance heterojunction phototransistors (HPTs) based on RPLPs with different organic spacer cations (namely butylammonium (BA+), cyclohexylammonium (CyHA+), phenethylammonium (PEA+), p-fluorophenylethylammonium (p-F-PEA+), and 2-thiophenethylammonium (2-ThEA+)) are fabricated successfully, in which high-mobility organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene is adopted to form type II heterojunction channels with RPLPs. The 2-ThEA+-RPLP-based HPTs show the highest photosensitivity of 3.18 × 107 and the best detectivity of 9.00 × 1018 Jones, while the p-F-PEA+-RPLP-based ones exhibit the highest photoresponsivity of 5.51 × 106 A W-1 and external quantum efficiency of 1.32 × 109%, all of which are among the highest reported values to date. These heterojunction systems also mimicked several optically controllable fundamental characteristics of biological synapses, including excitatory postsynaptic current, paired-pulse facilitation, and the transition from short-term memory to long-term memory states. The device based on 2-ThEA+-RPLP film shows an ultra-high PPF index of 234%. Moreover, spacer engineering brought fine-tuned thin film microstructures and efficient charge transport/transfer, which contributes to the superior photodetection performance and synaptic functions of these RPLP-based HPTs. In-depth structure-property correlations between the organic spacer cations/RPLPs and thin film microstructure/device performance are systematically investigated.
Key words

Full text: 1 Database: MEDLINE Language: En Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Language: En Year: 2024 Type: Article