Your browser doesn't support javascript.
loading
Modulating the density of silicon nanowire arrays for high-performance hydrovoltaic devices.
Zhang, Binbin; Zhang, Bingchang; Sheng, Guangshang; Gu, Chenyang; Yu, Jia; Zhang, Xiaohong.
Affiliation
  • Zhang B; Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
  • Zhang B; School of Optoelectronic Science and Engineering, Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, Jiangsu, People's Republic of China.
  • Sheng G; School of Optoelectronic Science and Engineering, Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, Jiangsu, People's Republic of China.
  • Gu C; School of Optoelectronic Science and Engineering, Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Laboratory of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, Jiangsu, People's Republic of China.
  • Yu J; Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
  • Zhang X; Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
Nanotechnology ; 35(18)2024 Feb 12.
Article in En | MEDLINE | ID: mdl-38271720
ABSTRACT
Hydrovoltaic devices (HDs) based on silicon nanowire (SiNW) arrays have received intensive attention due to their simple preparation, mature processing technology, and high output power. Investigating the impact of structure parameters of SiNWs on the performance of HDs can guide the optimization of the devices, but related research is still not sufficient. This work studies the effect of the SiNW density on the performance of HDs. SiNW arrays with different densities were prepared by controlling the react time of Si wafers in the seed solution (tseed) in metal-assisted chemical etching. Density of SiNW array gradually decreases with the increase oftseed. HDs were fabricated based on SiNW arrays with different densities. The research results indicate that the open-circuit voltage gradually decreases with increasingtseed, while the short-circuit current first increases and then decreases with increasingtseed. Overall, SiNW devices withtseedof 20 s and 60 s have the best output performance. The difference in output performance of HDs based on SiNWs with different densities is attributed to the difference in the gap sizes between SiNWs, specific surface area of SiNWs, and the number of SiNWs in parallel. This work gives the corresponding relationship between the preparation conditions of SiNWs, array density, and output performance of hydrovoltaic devices. Density parameters of SiNW arrays with optimized output performance and corresponding preparation conditions are revealed. The relevant results have important reference value for understanding the mechanism of HDs and designing structural parameters of SiNWs for high-performance hydrovoltaic devices.
Key words

Full text: 1 Database: MEDLINE Language: En Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Language: En Year: 2024 Type: Article