Your browser doesn't support javascript.
loading
Communication defects with astroglia contribute to early impairments in the motor cortex plasticity of SOD1G93A mice.
Costa-Pinto, Sara; Gonçalves-Ribeiro, Joana; Tedim-Moreira, Joana; Socodato, Renato; Relvas, João B; Sebastião, Ana M; Vaz, Sandra H.
Affiliation
  • Costa-Pinto S; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal.
  • Gonçalves-Ribeiro J; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal.
  • Tedim-Moreira J; Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal.
  • Socodato R; Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal.
  • Relvas JB; Instituto de Investigação e Inovação em Saúde and Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto 4200-135, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Porto 4200-135, Portugal.
  • Sebastião AM; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal.
  • Vaz SH; Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal. Electronic address: svaz@medicina.ulisboa.pt.
Neurobiol Dis ; 193: 106435, 2024 Apr.
Article in En | MEDLINE | ID: mdl-38336279
ABSTRACT
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, involving the selective degeneration of cortical upper synapses in the primary motor cortex (M1). Excitotoxicity in ALS occurs due to an imbalance between excitation and inhibition, closely linked to the loss/gain of astrocytic function. Using the ALS SOD1G93A mice, we investigated the astrocytic contribution for the electrophysiological alterations observed in the M1 of SOD1G93A mice, throughout disease progression. Results showed that astrocytes are involved in synaptic dysfunction observed in presymptomatic SOD1G93A mice, since astrocytic glutamate transport currents are diminished and pharmacological inhibition of astrocytes only impaired long-term potentiation and basal transmission in wild-type mice. Proteomic analysis revealed major differences in neuronal transmission, metabolism, and immune system in upper synapses, confirming early communication deficits between neurons and astroglia. These results provide valuable insights into the early impact of upper synapses in ALS and the lack of supportive functions of cortical astrocytes, highlighting the possibility of manipulating astrocytes to improve synaptic function.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Neurodegenerative Diseases / Amyotrophic Lateral Sclerosis / Motor Cortex Limits: Animals Language: En Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Main subject: Neurodegenerative Diseases / Amyotrophic Lateral Sclerosis / Motor Cortex Limits: Animals Language: En Year: 2024 Type: Article