Your browser doesn't support javascript.
loading
Gas-Phase Synthesis of Iron Silicide Nanostructures Using a Single-Source Precursor: Comparing Direct-Write Processing and Thermal Conversion.
Jungwirth, Felix; Salvador-Porroche, Alba; Porrati, Fabrizio; Jochmann, Nicolas P; Knez, Daniel; Huth, Michael; Gracia, Isabel; Cané, Carles; Cea, Pilar; De Teresa, José María; Barth, Sven.
Affiliation
  • Jungwirth F; Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany.
  • Salvador-Porroche A; Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany.
  • Porrati F; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
  • Jochmann NP; Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany.
  • Knez D; Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany.
  • Huth M; Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, Frankfurt 60438, Germany.
  • Gracia I; Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, Graz 8010, Austria.
  • Cané C; Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main 60323, Germany.
  • Cea P; Institut de Microelectrònica de Barcelona (IMB), Centre Nacional de Microelectrònica (CNM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08193, Spain.
  • De Teresa JM; Institut de Microelectrònica de Barcelona (IMB), Centre Nacional de Microelectrònica (CNM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08193, Spain.
  • Barth S; Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain.
J Phys Chem C Nanomater Interfaces ; 128(7): 2967-2977, 2024 Feb 22.
Article in En | MEDLINE | ID: mdl-38444783
ABSTRACT
The investigation of precursor classes for the fabrication of nanostructures is of specific interest for maskless fabrication and direct nanoprinting. In this study, the differences in material composition depending on the employed process are illustrated for focused-ion-beam- and focused-electron-beam-induced deposition (FIBID/FEBID) and compared to the thermal decomposition in chemical vapor deposition (CVD). This article reports on specific differences in the deposit composition and microstructure when the (H3Si)2Fe(CO)4 precursor is converted into an inorganic material. Maximum metal/metalloid contents of up to 90 at. % are obtained in FIBID deposits and higher than 90 at. % in CVD films, while FEBID with the same precursor provides material containing less than 45 at. % total metal/metalloid content. Moreover, the FeSi ratio is retained well in FEBID and CVD processes, but FIBID using Ga+ ions liberates more than 50% of the initial Si provided by the precursor. This suggests that precursors for FIBID processes targeting binary materials should include multiple bonding such as bridging positions for nonmetals. In addition, an in situ method for investigations of supporting thermal effects of precursor fragmentation during the direct-writing processes is presented, and the applicability of the precursor for nanoscale 3D FEBID writing is demonstrated.