Your browser doesn't support javascript.
loading
Engineering of Cas12a nuclease variants with enhanced genome-editing specificity.
Chen, Peng; Zhou, Jin; Liu, Huan; Zhou, Erchi; He, Boxiao; Wu, Yankang; Wang, Hongjian; Sun, Zaiqiao; Paek, Chonil; Lei, Jun; Chen, Yongshun; Zhang, Xinghua; Yin, Lei.
Affiliation
  • Chen P; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
  • Zhou J; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
  • Liu H; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
  • Zhou E; The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
  • He B; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
  • Wu Y; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
  • Wang H; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
  • Sun Z; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
  • Paek C; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
  • Lei J; The Faculty of Life Science, KIM IL SUNG University, Pyongyang, Democratic People's Republic of Korea.
  • Chen Y; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
  • Zhang X; State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
  • Yin L; The Institute for Advanced Studies, College of Life Sciences, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
PLoS Biol ; 22(3): e3002514, 2024 Mar.
Article in En | MEDLINE | ID: mdl-38483978
ABSTRACT
The clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a system is a powerful tool in gene editing; however, crRNA-DNA mismatches might induce unwanted cleavage events, especially at the distal end of the PAM. To minimize this limitation, we engineered a hyper fidelity AsCas12a variant carrying the mutations S186A/R301A/T315A/Q1014A/K414A (termed HyperFi-As) by modifying amino acid residues interacting with the target DNA and crRNA strand. HyperFi-As retains on-target activities comparable to wild-type AsCas12a (AsCas12aWT) in human cells. We demonstrated that HyperFi-As has dramatically reduced off-target effects in human cells, and HyperFi-As possessed notably a lower tolerance to mismatch at the position of the PAM-distal region compared with the wild type. Further, a modified single-molecule DNA unzipping assay at proper constant force was applied to evaluate the stability and transient stages of the CRISPR/Cas ribonucleoprotein (RNP) complex. Multiple states were sensitively detected during the disassembly of the DNA-Cas12a-crRNA complexes. On off-target DNA substrates, the HyperFi-As-crRNA was harder to maintain the R-loop complex state compared to the AsCas12aWT, which could explain exactly why the HyperFi-As has low off-targeting effects in human cells. Our findings provide a novel version of AsCas12a variant with low off-target effects, especially capable of dealing with the high off-targeting in the distal region from the PAM. An insight into how the AsCas12a variant behaves at off-target sites was also revealed at the single-molecule level and the unzipping assay to evaluate multiple states of CRISPR/Cas RNP complexes might be greatly helpful for a deep understanding of how CRISPR/Cas behaves and how to engineer it in future.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: CRISPR-Cas Systems / Gene Editing Limits: Humans Language: En Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Main subject: CRISPR-Cas Systems / Gene Editing Limits: Humans Language: En Year: 2024 Type: Article