Your browser doesn't support javascript.
loading
Allopolyploid origin and diversification of the Hawaiian endemic mints.
Tomlin, Crystal M; Rajaraman, Sitaram; Sebesta, Jeanne Theresa; Scheen, Anne-Cathrine; Bendiksby, Mika; Low, Yee Wen; Salojärvi, Jarkko; Michael, Todd P; Albert, Victor A; Lindqvist, Charlotte.
Affiliation
  • Tomlin CM; Department of Biological Sciences, University at Buffalo, New York, USA.
  • Rajaraman S; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  • Sebesta JT; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
  • Scheen AC; Department of Biological Sciences, University at Buffalo, New York, USA.
  • Bendiksby M; Stavanger Botanic Garden, City of Stavanger, Norway.
  • Low YW; Natural History Museum, University of Oslo, Oslo, Norway.
  • Salojärvi J; Singapore Botanic Gardens, National Parks Board, Singapore, Singapore.
  • Michael TP; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
  • Albert VA; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
  • Lindqvist C; The Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA.
Nat Commun ; 15(1): 3109, 2024 Apr 10.
Article in En | MEDLINE | ID: mdl-38600100
ABSTRACT
Island systems provide important contexts for studying processes underlying lineage migration, species diversification, and organismal extinction. The Hawaiian endemic mints (Lamiaceae family) are the second largest plant radiation on the isolated Hawaiian Islands. We generated a chromosome-scale reference genome for one Hawaiian species, Stenogyne calaminthoides, and resequenced 45 relatives, representing 34 species, to uncover the continental origins of this group and their subsequent diversification. We further resequenced 109 individuals of two Stenogyne species, and their purported hybrids, found high on the Mauna Kea volcano on the island of Hawai'i. The three distinct Hawaiian genera, Haplostachys, Phyllostegia, and Stenogyne, are nested inside a fourth genus, Stachys. We uncovered four independent polyploidy events within Stachys, including one allopolyploidy event underlying the Hawaiian mints and their direct western North American ancestors. While the Hawaiian taxa may have principally diversified by parapatry and drift in small and fragmented populations, localized admixture may have played an important role early in lineage diversification. Our genomic analyses provide a view into how organisms may have radiated on isolated island chains, settings that provided one of the principal natural laboratories for Darwin's thinking about the evolutionary process.
Subject(s)

Full text: 1 Database: MEDLINE Main subject: Mentha Limits: Humans Country/Region as subject: America do norte Language: En Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Main subject: Mentha Limits: Humans Country/Region as subject: America do norte Language: En Year: 2024 Type: Article