Your browser doesn't support javascript.
loading
Chiroptical Properties of Semiconducting Nanoplatelets Functionalized by Tartrate Derivatives.
Curti, Leonardo; Landaburu, Guillaume; Abécassis, Benjamin; Fleury, Benoit.
Affiliation
  • Curti L; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
  • Landaburu G; ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon France.
  • Abécassis B; ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364 Lyon France.
  • Fleury B; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France.
Langmuir ; 40(22): 11481-11490, 2024 Jun 04.
Article in En | MEDLINE | ID: mdl-38663023
ABSTRACT
Inducing chirality in semiconductor nanoparticles is a recent trend motivated by the possible applications in circularly polarized light emission, spintronics, or stereoselective synthesis. However, the previous reports on CdSe nanoplatelets (NPLs) exclusively rely on cysteine or its derivatives as chiral ligands to induce optical activity. Here, we show a strong induction of chirality with derivatives of tartaric acid obtained by a single-step synthesis. The ligand exchange procedure in organic solvent was optimized for five-monolayer (5 ML) NPLs but can also be performed on 4, 3, and 2 ML. We show that the features of the CD spectra change with structural modification of the ligands and that these chiral ligands interact mainly with the first light-hole (lh1) band rather than the first heavy-hole (hh1) band, contrary to cysteine. This result suggests that chiroptical properties could be used to probe CdSe nanoplatelets' surface ligands.

Full text: 1 Database: MEDLINE Language: En Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Language: En Year: 2024 Type: Article