Your browser doesn't support javascript.
loading
Loss of the ceramide synthase HYL-2 from Caenorhabditis elegans impairs stress responses and alters sphingolipid composition.
Zhu, Huaiyi; You, Yunfei; Yu, Boming; Deng, Zhitao; Liu, Min; Hu, Zhenying; Duan, Jingjing.
Affiliation
  • Zhu H; Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
  • You Y; Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
  • Yu B; Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
  • Deng Z; Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
  • Liu M; Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
  • Hu Z; Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
  • Duan J; Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China. Electronic address: duan.jingjing@ncu.edu.cn.
J Biol Chem ; 300(6): 107320, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38677510
ABSTRACT
Sphingolipids, essential membrane components and signaling molecules in cells, have ceramides at the core of their metabolic pathways. Initially termed as "longevity assurance genes", the encoding genes of ceramide synthases are closely associated with individual aging and stress responses, although the mechanisms remain unclear. This study aims to explore the alterations and underlying mechanisms of three ceramide synthases, HYL-1, HYL-2, and LAGR-1, in the aging and stress responses of Caenorhabditis elegans. Our results showed the knockdown of HYL-1 extends the lifespan and enhance stress resistance in worms, whereas the loss of HYL-2 function significantly impairs tolerances to heat, oxidation, and ultraviolet stress. Stress intolerance induced by HYL-2 deficiency may result from intracellular mitochondrial dysfunction, accumulation of reactive oxygen species, and abnormal nuclear translocation of DAF-16 under stress conditions. Loss of HYL-2 led to a significant reduction of predominant ceramides (d171/C20∼C23) as well as corresponding complex sphingolipids. Furthermore, the N-acyl chain length composition of sphingolipids underwent dramatic modifications, characterized by a decrease in C22 sphingolipids and an increase in C24 sphingolipids. Extra d181-ceramides resulted in diminished stress resilience in wild-type worms, while supplementation of d181/C16 ceramide to HYL-2-deficient worms marginally improved stress tolerance to heat and oxidation. These findings indicate the importance of appropriate ceramide content and composition in maintaining subcellular homeostasis and nuclear-cytoplasmic signal transduction during healthy aging and stress responses.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Sphingolipids / Caenorhabditis elegans / Caenorhabditis elegans Proteins Limits: Animals Language: En Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Main subject: Sphingolipids / Caenorhabditis elegans / Caenorhabditis elegans Proteins Limits: Animals Language: En Year: 2024 Type: Article