Your browser doesn't support javascript.
loading
Single 5-centimeter-aperture metalens enabled intelligent lightweight mid-infrared thermographic camera.
Hou, Mingming; Chen, Yan; Li, Junyu; Yi, Fei.
Affiliation
  • Hou M; School of Optical and Electronic Information and Wuhan National Research Center for Optoelectronics (WNLO), Huazhong University of Science and Technology, Hubei, Wuhan 430074, China.
  • Chen Y; School of Optical and Electronic Information and Wuhan National Research Center for Optoelectronics (WNLO), Huazhong University of Science and Technology, Hubei, Wuhan 430074, China.
  • Li J; IRay Technology Co. Ltd., Yantai 264006, China.
  • Yi F; School of Optical and Electronic Information and Wuhan National Research Center for Optoelectronics (WNLO), Huazhong University of Science and Technology, Hubei, Wuhan 430074, China.
Sci Adv ; 10(27): eado4847, 2024 Jul 05.
Article in En | MEDLINE | ID: mdl-38968354
ABSTRACT
Existing mid-infrared thermographic cameras rely on a stack of refractive lenses, resulting in bulky and heavy imaging systems that restrict their broader utility. Here, we demonstrate a lightweight metalens-based thermographic camera (MTC) enabled by a single 0.5-mm-thick, 3.7-g-weight, flat, and mass-producible metalens. The large aperture size (5 cm) of our metalens, when combined with an uncooled focal plane array, enables thermal imaging at distances of tens of meters. By computationally removing the veiling glare, our MTC realizes the temperature mapping with an inaccuracy of less than ±0.7% within the range of 35° to 700°C and shows exceptional environmental adaptability. Furthermore, by using intelligent algorithms and spectral filtering, our uncooled MTC enables visualization and quantification of the SF6 gas leakage at a long distance of 5 m, with a remarkable minimum detectable leak rate of 0.2 sccm. Our work opens the door to the lightweight and multifunctional intelligent thermal imaging systems.