Your browser doesn't support javascript.
loading
A nitroreductase responsive probe for early diagnosis of pulmonary fibrosis disease.
Peng, Shilan; Liang, Yuanyuan; Zhu, Haotian; Wang, Yike; Li, Yun; Zhao, Zuoquan; Li, Yesen; Zhuang, Rongqiang; Huang, Lumei; Zhang, Xianzhong; Guo, Zhide.
Affiliation
  • Peng S; State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China.
  • Liang Y; State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China.
  • Zhu H; State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China.
  • Wang Y; State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China.
  • Li Y; State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China.
  • Zhao Z; Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
  • Li Y; Department of Nuclear Medicine & Minnan PET Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China.
  • Zhuang R; State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China.
  • Huang L; State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China. Electronic address: huanglmchemistry@126.com.
  • Zhang X; Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China. Electronic add
  • Guo Z; State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang an Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen, 361102, China. Electronic address: gzd666888@xmu.edu.cn.
Redox Biol ; 75: 103294, 2024 09.
Article in En | MEDLINE | ID: mdl-39096854
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is a serious interstitial lung disease. However, the definitive diagnosis of IPF is impeded by the limited capabilities of current diagnostic methods, which may fail to capture the optimal timing for treatment. The main goal of this study is to determine the feasibility of a nitroreductase (NTR) responsive probe, 18F-NCRP, for early detection and deterioration monitoring of IPF. 18F-NCRP was obtained with high radiochemical purity (>95 %). BLM-injured mice were established by intratracheal instillation with bleomycin (BLM) and characterized through histological analysis. Longitudinal PET/CT imaging, biodistribution study and in vitro autoradiography were performed. The correlations between the uptake of 18F-NCRP and mean lung density (tested by CT), as well as histopathological characteristics were analyzed. In PET imaging study, 18F-NCRP exhibited promising efficacy in monitoring the progression of IPF, which was earlier than CT. The ratio of uptake in BLM-injured lung to control lung increased from 1.4-fold on D15 to 2.2-fold on D22. Biodistribution data showed a significant lung uptake of 18F-NCRP in BLM-injured mice. There was a strong positive correlation between the 18F-NCRP uptake in the BLM-injured lungs and the histopathological characteristics. Given that, 18F-NCRP PET imaging of NTR, a promising biomarker for investigating the underlying pathogenic mechanism of IPF, is attainable as well as desirable, which might lay the foundation for establishing an NTR-targeted imaging evaluation system of IPF.
Subject(s)
Key words

Full text: 1 Database: MEDLINE Main subject: Nitroreductases / Early Diagnosis / Idiopathic Pulmonary Fibrosis / Positron Emission Tomography Computed Tomography Limits: Animals / Humans / Male Language: En Year: 2024 Type: Article

Full text: 1 Database: MEDLINE Main subject: Nitroreductases / Early Diagnosis / Idiopathic Pulmonary Fibrosis / Positron Emission Tomography Computed Tomography Limits: Animals / Humans / Male Language: En Year: 2024 Type: Article