Your browser doesn't support javascript.
loading
Grayanotoxin-I-modified eel electroplax sodium channels. Correlation with batrachotoxin and veratridine modifications.
Duch, D S; Hernandez, A; Levinson, S R; Urban, B W.
Afiliación
  • Duch DS; Department of Anesthesiology, Cornell University Medical College, New York 10021.
J Gen Physiol ; 100(4): 623-45, 1992 Oct.
Article en En | MEDLINE | ID: mdl-1334121
ABSTRACT
To probe the structure-function relationships of voltage-dependent sodium channels, we have been examining the mechanisms of channel modification by batrachotoxin (BTX), veratridine (VTD), and grayanotoxin-I (GTX), investigating the unifying mechanisms that underlie the diverse modifications of this class of neurotoxins. In this paper, highly purified sodium channel polypeptides from the electric organ of the electric eel were incorporated into planar lipid bilayers in the presence of GTX for comparison with our previous studies of BTX (Recio-Pinto, E., D. S. Duch, S. R. Levinson, and B. W. Urban. 1987. J. Gen. Physiol. 90375-395) and VTD (Duch, D. S., E. Recio-Pinto, C. Frenkel, S. R. Levinson, and B. W. Urban. 1989. J. Gen. Physiol. 94813-831) modifications. GTX-modified channels had a single channel conductance of 16 pS. An additional large GTX-modified open state (40-55 pS) was found which occurred in bursts correlated with channel openings and closings. Two voltage-dependent processes controlling the open time of these modified channels were characterized (a) a concentration-dependent removal of inactivation analogous to VTD-modified channels, and (b) activation gating similar to BTX-modified channels, but occurring at more hyperpolarized potentials. The voltage dependence of removal of inactivation correlated with parallel voltage-dependent changes in the estimated K1/2 of VTD and GTX modifications. Ranking either the single channel conductances or the depolarization required for 50% activation, the same sequence is obtained unmodified > BTX > GTX > VTD. The efficacy of the toxins as activators follows the same ranking (Catterall, W. A. 1977. J. Biol. Chem. 2528669-8676).
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Canales de Sodio / Diterpenos / Órgano Eléctrico / Neurotoxinas Límite: Animals Idioma: En Año: 1992 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Canales de Sodio / Diterpenos / Órgano Eléctrico / Neurotoxinas Límite: Animals Idioma: En Año: 1992 Tipo del documento: Article