Your browser doesn't support javascript.
loading
Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin.
Mann, Karlheinz; Poustka, Albert J; Mann, Matthias.
Afiliación
  • Mann K; Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152 Martinsried, Am Klopferspitz 18, Germany. mann@biochem.mpg.de.
Proteome Sci ; 8(1): 6, 2010 Feb 08.
Article en En | MEDLINE | ID: mdl-20181113
ABSTRACT

BACKGROUND:

Sea urchin is a major model organism for developmental biology and biomineralization research. However, identification of proteins involved in larval skeleton formation and mineralization processes in the embryo and adult, and the molecular characterization of such proteins, has just gained momentum with the sequencing of the Strongylocentrotus purpuratus genome and the introduction of high-throughput proteomics into the field.

RESULTS:

The present report contains the determination of test (shell) and tooth organic matrix phosphoproteomes. Altogether 34 phosphoproteins were identified in the biomineral organic matrices. Most phosphoproteins were specific for one compartment, only two were identified in both matrices. The sea urchin phosphoproteomes contained several obvious orthologs of mammalian proteins, such as a Src family tyrosine kinase, protein kinase C-delta 1, Dickkopf-1 and other signal transduction components, or nucleobindin. In most cases phosphorylation sites were conserved between sea urchin and mammalian proteins. However, the majority of phosphoproteins had no mammalian counterpart. The most interesting of the sea urchin-specific phosphoproteins, from the perspective of biomineralization research, was an abundant highly phosphorylated and very acidic tooth matrix protein composed of 35 very similar short sequence repeats, a predicted N-terminal secretion signal sequence, and an Asp-rich C-terminal motif, contained in [Glean318919].

CONCLUSIONS:

The 64 phosphorylation sites determined represent the most comprehensive list of experimentally identified sea urchin protein phosphorylation sites at present and are an important addition to the recently analyzed Strongylocentrotus purpuratus shell and tooth proteomes. The identified phosphoproteins included a major, highly phosphorylated protein, [Glean318919], for which we suggest the name phosphodontin. Although not sequence-related to such highly phosphorylated acidic mammalian dental phosphoproteins as phosphoryn or dentin matrix protein-1, phosphodontin may perform similar functions in the sea urchin tooth. More than half of the detected proteins were not previously identified at the protein level, thus confirming the existence of proteins only known as genomic sequences previously.

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Año: 2010 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Año: 2010 Tipo del documento: Article