Your browser doesn't support javascript.
loading
Lipid bilayer-integrated optoelectronic tweezers for nanoparticle manipulations.
Ota, Sadao; Wang, Sheng; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang.
Afiliación
  • Ota S; Department of Mechanical Engineering, University of California Berkeley, California 94720, USA.
Nano Lett ; 13(6): 2766-70, 2013 Jun 12.
Article en En | MEDLINE | ID: mdl-23659726
ABSTRACT
Remotely manipulating a large number of microscopic objects is important to soft-condensed matter physics, biophysics, and nanotechnology. Optical tweezers and optoelectronic tweezers have been widely used for this purpose but face critical challenges when applied to nanoscale objects, including severe photoinduced damages, undesired ionic convections, or irreversible particle immobilization on surfaces. We report here the first demonstration of a lipid bilayer-integrated optoelectronic tweezers system for simultaneous manipulation of hundreds of 60 nm gold nanoparticles in an arbitrary pattern. We use a fluid lipid bilayer membrane with a ~5 nm thickness supported by a photoconductive electrode to confine the diffusion of chemically tethered nanoparticles in a two-dimensional space. Application of an external a.c. voltage together with patterned light selectively activates the photoconducting electrode that creates strong electric field localized near the surface. The field strength changes most significantly at the activated electrode surface where the particles tethered to the membrane thus experience the strongest dielectrophoretic forces. This design allows us to efficiently achieve dynamic, reversible, and parallel manipulation of many nanoparticles. Our approach to integrate biomolecular structures with optoelectronic devices offers a new platform enabling the study of thermodynamics in many particle systems and the selective transport of nanoscale objects for broad applications in biosensing and cellular mechanotransductions.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Electrónica / Pinzas Ópticas / Nanopartículas / Membrana Dobles de Lípidos Idioma: En Año: 2013 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Electrónica / Pinzas Ópticas / Nanopartículas / Membrana Dobles de Lípidos Idioma: En Año: 2013 Tipo del documento: Article