Your browser doesn't support javascript.
loading
A new adsorbent for boron removal from aqueous solutions.
Kluczka, Joanna; Korolewicz, Teofil; Zolotajkin, Maria; Simka, Wojciech; Raczek, Malwina.
Afiliación
  • Kluczka J; Faculty of Chemistry, Department of Chemistry, Inorganic Technology and Fuels, Silesian University of Technology, Gliwice, Poland. joanna.kluczka@polsl.pl
Environ Technol ; 34(9-12): 1369-76, 2013.
Article en En | MEDLINE | ID: mdl-24191469
ABSTRACT
A new adsorbent based on natural clinoptilolite and amorphous zirconium dioxide (ZrO2) was prepared for the uptake of boron from fresh water. The sorption behaviour of this adsorbent for boron was investigated using a batch system and found to obey Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The ZrO2 loading level, pH, temperature, contact time, initial boron concentration and adsorbent dose, on the removal of boron were studied. It was found that the removal of boron increased while the adsorbent dose increased and the temperature decreased at an optimum pH (pH = 8) and a contact time of 30 min. At optimum conditions, the maximum boron percentage removal was 75%. According to the D-R model, the maximum capacity was estimated to be > 3 mg B/g of the adsorbent. The adsorption energy value (calculated as 9.13 kJ/mol) indicated that the adsorption of boron on clinoptilolite modified with ZrO2 was physical in nature. The parameters of the adsorption models and the pH investigations pointed to the possibility of a chemisorption process. The thermodynamic parameters (standard entropy deltaS degrees, enthalpy deltaH degrees , and free energy deltaG degrees changes) of boron adsorption were also calculated. The negative value of deltaS degrees indicated a decreased randomness at the solid-solution interface during the boron adsorption. Negative values of deltaH degrees showed the exothermic nature of the process. The negative values of deltaG degrees implied that the adsorption of boron on clinoptilolite modified with amorphous ZrO2 at 25 degrees C was spontaneous. It was considered that boron dissolved in water had been adsorbed both physically and chemically on clinoptilolite modified with 30% ZrO2.
Asunto(s)
Buscar en Google
Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Boro / Purificación del Agua Idioma: En Año: 2013 Tipo del documento: Article
Buscar en Google
Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Boro / Purificación del Agua Idioma: En Año: 2013 Tipo del documento: Article