Your browser doesn't support javascript.
loading
High-strength nanocellulose-talc hybrid barrier films.
Liimatainen, Henrikki; Ezekiel, Ngesa; Sliz, Rafal; Ohenoja, Katja; Sirviö, Juho Antti; Berglund, Lars; Hormi, Osmo; Niinimäki, Jouko.
Afiliación
  • Liimatainen H; Fiber and Particle Engineering Laboratory, University of Oulu , P.O. Box 4300, FI-90014, Oulu, Finland.
ACS Appl Mater Interfaces ; 5(24): 13412-8, 2013 Dec 26.
Article en En | MEDLINE | ID: mdl-24215630
ABSTRACT
Hybrid organic-inorganic films mimicking natural nacre-like composite structures were fabricated from cellulose nanofibers obtained from sequential periodate-chlorite oxidation treatment and talc platelets, using a simple vacuum-filtration method. As a pretreatment, commercial talc aggregates were individualized into well-dispersed talc platelets using a wet stirred media mill with high-shear conditions to promote the homogeneity and mechanical characteristics of hybrids. The nanofiber-talc hybrids, which had talc contents from 1 to 50 wt %, were all flexible in bending, and possessed tensile strength and Young's modulus values up to 211 ± 3 MPa and 12 ± 1 GPa, respectively, the values being remarkably higher than those reported previously for nanofibrillated cellulose-talc films. Because of the lamellar and well-organized structure of hybrids in which the talc platelets were evenly embedded, they possessed a small pore size and good oxygen barrier properties, as indicated by the preliminary results. The talc platelets decreased the moisture adsorption of highly talc-loaded hybrids, although they still exhibited hydrophilic surface characteristics in terms of contact angles.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2013 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2013 Tipo del documento: Article