Your browser doesn't support javascript.
loading
Gas flow in plant microfluidic networks controlled by capillary valves.
Capron, M; Tordjeman, Ph; Charru, F; Badel, E; Cochard, H.
Afiliación
  • Capron M; Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.
  • Tordjeman P; Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.
  • Charru F; Université de Toulouse, INPT-CNRS, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur C. Soula, 31400 Toulouse, France.
  • Badel E; INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2, France.
  • Cochard H; INRA, UMR 547 PIAF, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France and and Clermont Université, Université Blaise Pascal, UMR A547 PIAF, F-63000 Clermont-Ferrand Cedex 2, France.
Article en En | MEDLINE | ID: mdl-24730949
ABSTRACT
The xylem vessels of trees constitute a model natural microfluidic system. In this work, we have studied the mechanism of air flow in the Populus xylem. The vessel microstructure was characterized by optical microscopy, transmission electronic microscopy (TEM), and atomic force microscopy (AFM) at different length scales. The xylem vessels have length ≈15 cm and diameter ≈20µm. Flow from one vessel to the next occurs through ∼102 pits, which are grouped together at the ends of the vessels. The pits contain a thin, porous pit membrane with a thickness of 310 nm. We have measured the Young's moduli of the vessel wall and of the pits (both water-saturated and after drying) by specific nanoindentation and nanoflexion experiments with AFM. We found that both the dried and water-saturated pit membranes have Young's modulus around 0.4 MPa, in agreement with values obtained by micromolding of pits deformed by an applied pressure difference. Air injection experiments reveal that air flows through the xylem vessels when the differential pressure across a sample is larger than a critical value ΔPc=1.8 MPa. In order to model the air flow rate for ΔP⩾ΔPc, we assumed the pit membrane to be a porous medium that is strained by the applied pressure difference. Water menisci in the pit pores play the role of capillary valves, which open at ΔP=ΔPc. From the point of view of the plant physiology, this work presents a basic understanding of the physics of bordered pits.
Asunto(s)
Buscar en Google
Banco de datos: MEDLINE Asunto principal: Agua / Populus / Microfluídica / Gases / Modelos Biológicos Idioma: En Año: 2014 Tipo del documento: Article
Buscar en Google
Banco de datos: MEDLINE Asunto principal: Agua / Populus / Microfluídica / Gases / Modelos Biológicos Idioma: En Año: 2014 Tipo del documento: Article