Your browser doesn't support javascript.
loading
Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons.
Flytzanis, Nicholas C; Bedbrook, Claire N; Chiu, Hui; Engqvist, Martin K M; Xiao, Cheng; Chan, Ken Y; Sternberg, Paul W; Arnold, Frances H; Gradinaru, Viviana.
Afiliación
  • Flytzanis NC; 1] Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA [2].
  • Bedbrook CN; 1] Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA [2].
  • Chiu H; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  • Engqvist MK; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  • Xiao C; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  • Chan KY; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  • Sternberg PW; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  • Arnold FH; 1] Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA [2] Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.
  • Gradinaru V; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA.
Nat Commun ; 5: 4894, 2014 Sep 15.
Article en En | MEDLINE | ID: mdl-25222271
ABSTRACT
Probing the neural circuit dynamics underlying behaviour would benefit greatly from improved genetically encoded voltage indicators. The proton pump Archaerhodopsin-3 (Arch), an optogenetic tool commonly used for neuronal inhibition, has been shown to emit voltage-sensitive fluorescence. Here we report two Arch variants with enhanced radiance (Archers) that in response to 655 nm light have 3-5 times increased fluorescence and 55-99 times reduced photocurrents compared with Arch WT. The most fluorescent variant, Archer1, has 25-40% fluorescence change in response to action potentials while using 9 times lower light intensity compared with other Arch-based voltage sensors. Archer1 is capable of wavelength-specific functionality as a voltage sensor under red light and as an inhibitory actuator under green light. As a proof-of-concept for the application of Arch-based sensors in vivo, we show fluorescence voltage sensing in behaving Caenorhabditis elegans. Archer1's characteristics contribute to the goal of all-optical detection and modulation of activity in neuronal networks in vivo.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Potenciales de Acción / Proteínas del Helminto / Proteínas Arqueales / Proteínas del Tejido Nervioso / Neuronas Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Año: 2014 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Potenciales de Acción / Proteínas del Helminto / Proteínas Arqueales / Proteínas del Tejido Nervioso / Neuronas Tipo de estudio: Diagnostic_studies Límite: Animals Idioma: En Año: 2014 Tipo del documento: Article