Your browser doesn't support javascript.
loading
Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex.
Varga, Csaba; Tamas, Gabor; Barzo, Pal; Olah, Szabolcs; Somogyi, Peter.
Afiliación
  • Varga C; Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Current address: Szentágothai Research Centre, Department of Physi
  • Tamas G; Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience.
  • Barzo P; Department of Neurosurgery, University of Szeged, Szeged, Hungary.
  • Olah S; Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience.
  • Somogyi P; MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
Cereb Cortex ; 25(11): 4430-49, 2015 Nov.
Article en En | MEDLINE | ID: mdl-25787832
ABSTRACT
Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I-III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Lóbulo Temporal / Potenciales de Acción / Factor de Transcripción COUP I / Neuronas GABAérgicas Límite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Año: 2015 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Lóbulo Temporal / Potenciales de Acción / Factor de Transcripción COUP I / Neuronas GABAérgicas Límite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Año: 2015 Tipo del documento: Article