Your browser doesn't support javascript.
loading
Light-controlled intracellular transport in Caenorhabditis elegans.
Harterink, Martin; van Bergeijk, Petra; Allier, Calixte; de Haan, Bart; van den Heuvel, Sander; Hoogenraad, Casper C; Kapitein, Lukas C.
Afiliación
  • Harterink M; Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
  • van Bergeijk P; Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
  • Allier C; Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
  • de Haan B; Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
  • van den Heuvel S; Developmental Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
  • Hoogenraad CC; Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands. Electronic address: c.hoogenraad@uu.nl.
  • Kapitein LC; Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands. Electronic address: l.kapitein@uu.nl.
Curr Biol ; 26(4): R153-4, 2016 Feb 22.
Article en En | MEDLINE | ID: mdl-26906482
ABSTRACT
To establish and maintain their complex morphology and function, neurons and other polarized cells exploit cytoskeletal motor proteins to distribute cargoes to specific compartments. Recent studies in cultured cells have used inducible motor protein recruitment to explore how different motors contribute to polarized transport and to control the subcellular positioning of organelles. Such approaches also seem promising avenues for studying motor activity and organelle positioning within more complex cellular assemblies, but their applicability to multicellular in vivo systems has so far remained unexplored. Here, we report the development of an optogenetic organelle transport strategy in the in vivo model system Caenorhabditis elegans. We demonstrate that movement and pausing of various organelles can be achieved by recruiting the proper cytoskeletal motor protein with light. In neurons, we find that kinesin and dynein exclusively target the axon and dendrite, respectively, revealing the basic principles for polarized transport. In vivo control of motor attachment and organelle distributions will be widely useful in exploring the mechanisms that govern the dynamic morphogenesis of cells and tissues, within the context of a developing animal.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Orgánulos / Cinesinas / Caenorhabditis elegans / Dineínas / Multimerización de Proteína / Luz Límite: Animals Idioma: En Año: 2016 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Orgánulos / Cinesinas / Caenorhabditis elegans / Dineínas / Multimerización de Proteína / Luz Límite: Animals Idioma: En Año: 2016 Tipo del documento: Article