Your browser doesn't support javascript.
loading
Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.
Yao, Kaiyuan; Yan, Aiming; Kahn, Salman; Suslu, Aslihan; Liang, Yufeng; Barnard, Edward S; Tongay, Sefaattin; Zettl, Alex; Borys, Nicholas J; Schuck, P James.
Afiliación
  • Yao K; Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Yan A; Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA.
  • Kahn S; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Suslu A; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Liang Y; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Barnard ES; Department of Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA.
  • Tongay S; Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Zettl A; Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Borys NJ; Department of Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA.
  • Schuck PJ; Department of Physics, University of California, Berkeley, California 94720, USA.
Phys Rev Lett ; 119(8): 087401, 2017 Aug 25.
Article en En | MEDLINE | ID: mdl-28952768
ABSTRACT
Optoelectronic excitations in monolayer MoS_{2} manifest from a hierarchy of electrically tunable, Coulombic free-carrier and excitonic many-body phenomena. Investigating the fundamental interactions underpinning these phenomena-critical to both many-body physics exploration and device applications-presents challenges, however, due to a complex balance of competing optoelectronic effects and interdependent properties. Here, optical detection of bound- and free-carrier photoexcitations is used to directly quantify carrier-induced changes of the quasiparticle band gap and exciton binding energies. The results explicitly disentangle the competing effects and highlight longstanding theoretical predictions of large carrier-induced band gap and exciton renormalization in two-dimensional semiconductors.

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2017 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Año: 2017 Tipo del documento: Article