Your browser doesn't support javascript.
loading
Oxysterol levels and metabolism in the course of neuroinflammation: insights from in vitro and in vivo models.
Mutemberezi, Valentin; Buisseret, Baptiste; Masquelier, Julien; Guillemot-Legris, Owein; Alhouayek, Mireille; Muccioli, Giulio G.
Afiliación
  • Mutemberezi V; Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium.
  • Buisseret B; Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium.
  • Masquelier J; Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium.
  • Guillemot-Legris O; Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium.
  • Alhouayek M; Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium.
  • Muccioli GG; Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCL), Av. E. Mounier, 72 (B1.72.01), 1200, Bruxelles, Belgium. giulio.muccioli@uclouvain.be.
J Neuroinflammation ; 15(1): 74, 2018 Mar 09.
Article en En | MEDLINE | ID: mdl-29523207
ABSTRACT

BACKGROUND:

Oxysterols are cholesterol derivatives that have been suggested to play a role in inflammatory diseases such as obesity, atherosclerosis, or neuroinflammatory diseases. However, the effect of neuroinflammation on oxysterol levels has only been partially studied so far.

METHODS:

We used an HPLC-MS method to quantify over ten oxysterols both in in vitro and in vivo models of neuroinflammation. In the same models, we used RT-qPCR to analyze the expression of the enzymes responsible for oxysterol metabolism. Using the BV2 microglial cell line, we explored the effect of lipopolysaccharide (LPS)-induced (M1-type) and IL-4-induced (M2-type) cell activation on oxysterol levels. We also used LPS-activated co-cultures of mouse primary microglia and astrocytes. In vivo, we induced a neuroinflammation by administering LPS to mice. Finally, we used a mouse model of multiple sclerosis, namely the experimental autoimmune encephalomyelitis (EAE) model, that is characterized by demyelination and neuroinflammation.

RESULTS:

In vitro, we found that LPS activation induces profound alterations in oxysterol levels. Interestingly, we could discriminate between control and LPS-activated cells based on the changes in oxysterol levels both in BV2 cells and in the primary co-culture of glial cells. In vivo, the changes in oxysterol levels were less marked than in vitro. However, we found in both models increased levels of the GPR183 agonist 7α,25-dihydroxycholesterol. Furthermore, we studied in vitro the effect of 14 oxysterols on the mRNA expression of inflammatory markers in LPS-activated co-culture of microglia and astrocytes. We found that several oxysterols decreased the LPS-induced expression of pro-inflammatory markers.

CONCLUSIONS:

These data demonstrate that inflammation profoundly affects oxysterol levels and that oxysterols can modulate glial cell activation. This further supports the interest of a large screening of oxysterol levels when studying the interplay between neuroinflammation and bioactive lipids.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Encefalitis / Encefalomielitis Autoinmune Experimental / Oxiesteroles / Metabolismo Límite: Animals Idioma: En Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Encefalitis / Encefalomielitis Autoinmune Experimental / Oxiesteroles / Metabolismo Límite: Animals Idioma: En Año: 2018 Tipo del documento: Article