Your browser doesn't support javascript.
loading
Mechanistic Insights into Homogeneous Electrocatalytic and Photocatalytic Hydrogen Evolution Catalyzed by High-Spin Ni(II) Complexes with S2N2-Type Tetradentate Ligands.
Hong, Dachao; Tsukakoshi, Yuto; Kotani, Hiroaki; Ishizuka, Tomoya; Ohkubo, Kei; Shiota, Yoshihito; Yoshizawa, Kazunari; Fukuzumi, Shunichi; Kojima, Takahiko.
Afiliación
  • Hong D; Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba, CREST, Japan Science and Technology Agency , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan.
  • Tsukakoshi Y; Interdisciplinary Research Center for Catalytic Chemistry , National Institute of Advanced Industrial Science and Technology , 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan.
  • Kotani H; Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba, CREST, Japan Science and Technology Agency , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan.
  • Ishizuka T; Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba, CREST, Japan Science and Technology Agency , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan.
  • Ohkubo K; Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba, CREST, Japan Science and Technology Agency , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan.
  • Shiota Y; Institute for Advanced Co-Creation Studies and Institute for Academic Initiatives , Osaka University , Suita , Osaka 565-0871 , Japan.
  • Yoshizawa K; Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea.
  • Fukuzumi S; Institute for Materials Chemistry and Engineering , Kyushu University, CREST, Japan Science and Technology Agency , Motooka , Nishi-Ku, Fukuoka 819-0395 , Japan.
  • Kojima T; Institute for Materials Chemistry and Engineering , Kyushu University, CREST, Japan Science and Technology Agency , Motooka , Nishi-Ku, Fukuoka 819-0395 , Japan.
Inorg Chem ; 57(12): 7180-7190, 2018 Jun 18.
Article en En | MEDLINE | ID: mdl-29847103
ABSTRACT
We report homogeneous electrocatalytic and photocatalytic H2 evolution using two Ni(II) complexes with S2N2-type tetradentate ligands bearing two different sizes of chelate rings as catalysts. A Ni(II) complex with a five-membered SC2S-Ni chelate ring (1) exhibited higher activity than that with a six-membered SC3S-Ni chelate ring (2) in both electrocatalytic and photocatalytic H2 evolution despite both complexes showing the same reduction potentials. A stepwise reduction of the Ni center from Ni(II) to Ni(0) was observed in the electrochemical measurements; the first reduction is a pure electron transfer reaction to form a Ni(I) complex as confirmed by electron spin resonance measurements, and the second is a 1e-/1H+ proton-coupled electron transfer reaction to afford a putative Ni(II)-hydrido (NiII-H) species. We also clarified that Ni(II) complexes can act as homogeneous catalysts in the electrocatalytic H2 evolution, in which complex 1 exhibited higher reactivity than that of 2. In the photocatalytic system using [Ru(bpy)3]2+ as a photosensitizer and sodium ascorbate as a reductant, complex 1 with the five-membered chelate ring also showed higher catalytic activity than that of 2 with the six-membered chelate ring, although the rates of photoinduced electron-transfer processes were comparable. The Ni-H bond cleavage in the putative NiII-H intermediate should be involved in the rate-limiting step as evidenced by kinetic isotope effects observed in both photocatalytic and electrocatalytic H2 evolution. Kinetic analysis and density functional theory calculations indicated that the difference in H2 evolution activity between the two complexes was derived from that of activation barriers of the reactions between the NiII-H intermediates and proton, which is consistent with the fact that increase of proton concentration accelerates the H2 evolution.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2018 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2018 Tipo del documento: Article