Your browser doesn't support javascript.
loading
Dielectrophoresis-assisted creation of cell aggregates under flow conditions using planar electrodes.
Cottet, Jonathan; Kehren, Alexandre; Lasli, Soufian; van Lintel, Harald; Buret, François; Frénéa-Robin, Marie; Renaud, Philippe.
Afiliación
  • Cottet J; Univ Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CNRS, Ampère, Ecully, France.
  • Kehren A; École Polytechnique Fédérale de Lausanne, EPFL-STI-IMT-LMIS4, Station 17, CH-1015, Lausanne, Switzerland.
  • Lasli S; École Polytechnique Fédérale de Lausanne, EPFL-STI-IMT-LMIS4, Station 17, CH-1015, Lausanne, Switzerland.
  • van Lintel H; École Polytechnique Fédérale de Lausanne, EPFL-STI-IMT-LMIS4, Station 17, CH-1015, Lausanne, Switzerland.
  • Buret F; École Polytechnique Fédérale de Lausanne, EPFL-STI-IMT-LMIS4, Station 17, CH-1015, Lausanne, Switzerland.
  • Frénéa-Robin M; Univ Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CNRS, Ampère, Ecully, France.
  • Renaud P; Univ Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, INSA Lyon, CNRS, Ampère, Ecully, France.
Electrophoresis ; 40(10): 1498-1509, 2019 05.
Article en En | MEDLINE | ID: mdl-30706961
ABSTRACT
We present a microfluidic platform allowing dielectrophoresis-assisted formation of cell aggregates of controlled size and composition under flow conditions. When specific experimental conditions are met, negative dielectrophoresis allows efficient concentration of cells towards electric field minima and subsequent aggregation. This bottom-up assembly strategy offers several advantages with respect to the targeted application first, dielectrophoresis offers precise control of spatial cell organization, which can be adjusted by optimizing electrode design. Then, it could contribute to accelerate the establishment of cell-cell interactions by favoring close contact between neighboring cells. The trapping geometry of our chip is composed of eight electrodes arranged in a circle. Several parameters have been tested in simulations to find the best configurations for trapping in flow. Those configurations have been tested experimentally with both polystyrene beads and human embryonic kidney cells. The final design and experimental setup have been optimized to trap cells and release the created aggregates on demand.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Comunicación Celular / Electroforesis Límite: Humans Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Comunicación Celular / Electroforesis Límite: Humans Idioma: En Año: 2019 Tipo del documento: Article