Your browser doesn't support javascript.
loading
Constraints on Minute-Scale Transient Astrophysical Neutrino Sources.
Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Al Samarai, I; Altmann, D; Andeen, K; Anderson, T; Ansseau, I; Anton, G; Argüelles, C; Auffenberg, J; Axani, S; Backes, P; Bagherpour, H; Bai, X; Barbano, A; Barron, J P; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Becker Tjus, J; Becker, K-H; BenZvi, S; Berley, D; Bernardini, E; Besson, D Z; Binder, G; Bindig, D; Blaufuss, E; Blot, S; Bohm, C; Börner, M; Bos, F; Böser, S; Botner, O; Bourbeau, E; Bourbeau, J; Bradascio, F; Braun, J; Brenzke, M; Bretz, H-P; Bron, S; Brostean-Kaiser, J; Burgman, A; Busse, R S; Carver, T.
Afiliación
  • Aartsen MG; Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
  • Ackermann M; DESY, D-15738 Zeuthen, Germany.
  • Adams J; Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
  • Aguilar JA; Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium.
  • Ahlers M; Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
  • Ahrens M; Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden.
  • Al Samarai I; Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland.
  • Altmann D; Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
  • Andeen K; Department of Physics, Marquette University, Milwaukee, Wisconsin, 53201, USA.
  • Anderson T; Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  • Ansseau I; Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium.
  • Anton G; Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
  • Argüelles C; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Auffenberg J; III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany.
  • Axani S; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Backes P; III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany.
  • Bagherpour H; Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.
  • Bai X; Physics Department, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA.
  • Barbano A; Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland.
  • Barron JP; Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
  • Barwick SW; Department of Physics and Astronomy, University of California, Irvine, California 92697, USA.
  • Baum V; Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany.
  • Bay R; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Beatty JJ; Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210, USA.
  • Becker Tjus J; Department of Astronomy, Ohio State University, Columbus, Ohio 43210, USA.
  • Becker KH; Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
  • BenZvi S; Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany.
  • Berley D; Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
  • Bernardini E; Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
  • Besson DZ; DESY, D-15738 Zeuthen, Germany.
  • Binder G; Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA.
  • Bindig D; Department of Physics, University of California, Berkeley, California 94720, USA.
  • Blaufuss E; Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Blot S; Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany.
  • Bohm C; Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
  • Börner M; DESY, D-15738 Zeuthen, Germany.
  • Bos F; Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden.
  • Böser S; Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany.
  • Botner O; Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
  • Bourbeau E; Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany.
  • Bourbeau J; Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden.
  • Bradascio F; Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
  • Braun J; Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA.
  • Brenzke M; DESY, D-15738 Zeuthen, Germany.
  • Bretz HP; Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA.
  • Bron S; III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany.
  • Brostean-Kaiser J; DESY, D-15738 Zeuthen, Germany.
  • Burgman A; Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland.
  • Busse RS; DESY, D-15738 Zeuthen, Germany.
  • Carver T; Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden.
Phys Rev Lett ; 122(5): 051102, 2019 Feb 08.
Article en En | MEDLINE | ID: mdl-30822017
ABSTRACT
High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient sources. Assuming an E^{-2.5} neutrino spectrum, we find that the neutrino flux of rare sources, like long gamma-ray bursts, is constrained to <5% of the detected astrophysical flux and the energy released in neutrinos (100 GeV to 10 PeV) by a median bright GRB-like source is <10^{52.5} erg. For a harder E^{-2.13} neutrino spectrum up to 30% of the flux could be produced by GRBs and the allowed median source energy is <10^{52} erg. A hypothetical population of transient sources has to be more common than 10^{-5} Mpc^{-3} yr^{-1} (5×10^{-8} Mpc^{-3} yr^{-1} for the E^{-2.13} spectrum) to account for the complete astrophysical neutrino flux.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2019 Tipo del documento: Article