Your browser doesn't support javascript.
loading
Coherent generation and manipulation of entangled stationary photons based on a multiple degrees of freedom quantum memory.
Opt Express ; 27(20): 27477-27487, 2019 Sep 30.
Article en En | MEDLINE | ID: mdl-31684513
ABSTRACT
We propose a quantum memory, each subsystem of which is comprised of two double M-type systems of cold atoms, for the first generation of entangled stationary photons (ESPs). Through the active operation of two pairs of counter-propagating controlling fields in time, the reversible transfer of entanglement between photons and atomic ensembles is realized, and the ESPs can be created due to the tight coupling and balanced competition between the corresponding retrieved signal photons. The reduced density matrix in the photon-polarization basis, which provides the lower bound for any purported entanglement, is constructed for discussing the dynamics evolution of the entanglement in terms of the concurrence. We show that the present scheme can be employed for the entangled photons encoded in degrees of freedom (DOFs) of polarization and orbital angular momentum. Such a multiple DOFs dependent scheme, with many benefits over that in a single one, could pave the way toward quantum nonlinear optics without a cavity and could greatly enhance the tunability and capacity for the quantum information processing.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2019 Tipo del documento: Article