Your browser doesn't support javascript.
loading
Activation of the PDGFRα-Nrf2 pathway mediates impaired adipocyte differentiation in bone marrow mesenchymal stem cells lacking Nck1.
Haider, Nida; Larose, Louise.
Afiliación
  • Haider N; Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
  • Larose L; Division of Experimental Medicine, Department of Medicine, McGill University and The Research Institute of McGill University Health Centre, Montreal, QC, H4A 3J1, Canada. louise.larose@mcgill.ca.
Cell Commun Signal ; 18(1): 26, 2020 02 14.
Article en En | MEDLINE | ID: mdl-32059739
ABSTRACT

BACKGROUND:

The limited options to treat obesity and its complications result from an incomplete understanding of the underlying molecular mechanisms regulating white adipose tissue development, including adipocyte hypertrophy (increase in size) and hyperplasia (increase in number through adipogenesis). We recently demonstrated that lack of the adaptor protein Nck1 in mice is associated with reduced adiposity and impaired adipocyte differentiation. In agreement, Nck1 depletion in 3 T3-L1 cells also attenuates adipocyte differentiation by enhancing PDGFRα activation and signaling. This is accompanied by higher expression of PDGF-A, a specific PDGFRα ligand, that may contribute to enhanced activation of PDGFRα signaling in the absence of Nck1 in white adipose tissue. However, whether Nck1 deficiency also impairs adipogenic differentiation in bone marrow still remains to be determined.

METHODS:

To address this point, Nck1-deficient derived bone marrow mesenchymal stem/stromal cells (BM-MSCs) and C3H10T1/2 mesenchymal stem cells were differentiated into adipocytes in vitro. Genes and proteins expression in these cellular models were determined using qPCR and western blotting respectively. Pharmacological approaches were used to assess a role for Nrf2 in mediating Nck1 deficiency effect on mesenchymal stem cells adipocyte differentiation.

RESULTS:

Nck1 deficiency in both BM-MSCs and C3H10T1/2 results in impaired adipocyte differentiation, accompanied by increased activation of the transcription factor Nrf2, as shown by increased mRNA levels of Nrf2 target genes, including PDGF-A. Using pharmacological activator and inhibitor of Nrf2, we further provide evidence that Nrf2 is an important player in PDGFRα signaling that mediates expression of PDGF-A and impaired adipogenesis in Nck1-deficient BM-MSCs and C3H10T1/2 cells.

CONCLUSION:

This study demonstrates that Nck1 deficiency in mesenchymal stem cells impairs adipogenesis through activation of the PDGFRα-Nrf2 anti-adipogenic signaling pathway. Video Abstract.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Factor de Crecimiento Derivado de Plaquetas / Proteínas Oncogénicas / Proteínas Adaptadoras Transductoras de Señales / Factor 2 Relacionado con NF-E2 / Células Madre Mesenquimatosas / Obesidad Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Factor de Crecimiento Derivado de Plaquetas / Proteínas Oncogénicas / Proteínas Adaptadoras Transductoras de Señales / Factor 2 Relacionado con NF-E2 / Células Madre Mesenquimatosas / Obesidad Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2020 Tipo del documento: Article