Your browser doesn't support javascript.
loading
Direct large-area growth of graphene on silicon for potential ultra-low-friction applications and silicon-based technologies.
Tseng, Wei-Shiuan; Chen, Yen-Chun; Hsu, Chen-Chih; Lu, Chen-Hsuan; Wu, Chih-I; Yeh, Nai-Chang.
Afiliación
  • Tseng WS; Department of Physics, California Institute of Technology, Pasadena, CA 91125, United States of America. College of Photonics, National Chiao-Tung University, Hsin-Chu 30013, Taiwan.
Nanotechnology ; 31(33): 335602, 2020 Aug 14.
Article en En | MEDLINE | ID: mdl-32369779
ABSTRACT
Deposition of layers of graphene on silicon has the potential for a wide range of optoelectronic and mechanical applications. However, direct growth of graphene on silicon has been difficult due to the inert, oxidized silicon surfaces. Transferring graphene from metallic growth substrates to silicon is not a good solution either, because most transfer methods involve multiple steps that often lead to polymer residues or degradation of sample quality. Here we report a single-step method for large-area direct growth of continuous horizontal graphene sheets and vertical graphene nano-walls on silicon substrates by plasma-enhanced chemical vapor deposition (PECVD) without active heating. Comprehensive studies utilizing Raman spectroscopy, x-ray/ultraviolet photoelectron spectroscopy (XPS/UPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical transmission are carried out to characterize the quality and properties of these samples. Data gathered by the residual gas analyzer (RGA) during the growth process further provide information about the synthesis mechanism. Additionally, ultra-low friction (with a frictional coefficient ∼0.015) on multilayer graphene-covered silicon surface is achieved, which is approaching the superlubricity limit (for frictional coefficients <0.01). Our growth method therefore opens up a new pathway towards scalable and direct integration of graphene into silicon technology for potential applications ranging from structural superlubricity to nanoelectronics, optoelectronics, and even the next-generation lithium-ion batteries.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2020 Tipo del documento: Article