Your browser doesn't support javascript.
loading
Simultaneous Determination of 6-Shogaol and 6-Gingerol in Various Ginger (Zingiber officinale Roscoe) Extracts and Commercial Formulations Using a Green RP-HPTLC-Densitometry Method.
Foudah, Ahmed I; Shakeel, Faiyaz; Yusufoglu, Hasan S; Ross, Samir A; Alam, Prawez.
Afiliación
  • Foudah AI; Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
  • Shakeel F; Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
  • Yusufoglu HS; Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
  • Ross SA; National Center for Natural Products Research, University of Mississippi, Oxford, MS 38677, USA.
  • Alam P; Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.
Foods ; 9(8)2020 Aug 18.
Article en En | MEDLINE | ID: mdl-32824752
ABSTRACT
Various analytical methodologies have been reported for the determination of 6-shogaol (6-SHO) and 6-gingerol (6-GIN) in ginger extracts and commercial formulations. However, green analytical methods for the determination of 6-SHO and 6-GIN, either alone or in combination, have not yet been reported in literature. Hence, the present study was aimed to develop a rapid, simple, and cheaper green reversed phase high-performance thin-layer chromatography (RP-HPTLC) densitometry method for the simultaneous determination of 6-SHO and 6-GIN in the traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas. The simultaneous analysis of 6-SHO and 6-GIN was carried out via RP-18 silica gel 60 F254S HPTLC plates. The mixture of green solvents, i.e., ethanolwater (6.53.5 v/v) was utilized as a mobile phase for the simultaneous analysis of 6-SHO and 6-GIN. The analysis of 6-SHO and 6-GIN was performed at λmax = 200 nm for 6-SHO and 6-GIN. The densitograms of 6-SHO and 6-GIN from traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were verified by obtaining their single band at Rf = 0.36 ± 0.01 for 6-SHO and Rf = 0.53 ± 0.01 for 6-GIN, compared to standard 6-SHO and 6-GIN. The green RP-HPTLC method was found to be linear, in the range of 100-700 ng/band with R2 = 0.9988 for 6-SHO and 50-600 ng/band with R2 = 0.9995 for 6-GIN. In addition, the method was recorded as "accurate, precise, robust and sensitive" for the simultaneous quantification of 6-SHO and 6-GIN in traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas. The amount of 6-SHO in traditional extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas was obtained as 12.1, 17.9, 10.5, and 9.6 mg/g of extract, respectively. However, the amount of 6-SHO in ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were obtained as 14.6, 19.7, 11.6, and 10.7 mg/g of extract, respectively. The amount of 6-GIN in traditional extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were found as 10.2, 15.1, 7.3, and 6.9 mg/g of extract, respectively. However, the amount of 6-GIN in ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were obtained as 12.7, 17.8, 8.8, and 7.9 mg/g of extract, respectively. Overall, the results of this study indicated that the proposed analytical technique could be effectively used for the simultaneous quantification of 6-SHO and 6-GIN in a wide range of plant extracts and commercial formulations.
Palabras clave