Your browser doesn't support javascript.
loading
Prediction of Transporter-Mediated Rosuvastatin Hepatic Uptake Clearance and Drug Interaction in Humans Using Proteomics-Informed REF Approach.
Kumar, Vineet; Yin, Mengyue; Ishida, Kazuya; Salphati, Laurent; Hop, Cornelis E C A; Rowbottom, Christopher; Xiao, Guangqing; Lai, Yurong; Mathias, Anita; Chu, Xiaoyan; Humphreys, W Griffith; Liao, Mingxiang; Nerada, Zsuzsanna; Szilvásy, Nóra; Heyward, Scott; Unadkat, Jashvant D.
Afiliación
  • Kumar V; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Yin M; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Ishida K; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Salphati L; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Hop CECA; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Rowbottom C; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Xiao G; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Lai Y; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Mathias A; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Chu X; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Humphreys WG; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Liao M; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Nerada Z; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Szilvásy N; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Heyward S; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
  • Unadkat JD; Department of Pharmaceutics, University of Washington, Seattle, Washington (V.K., M.Y., K.I., J.D.U.); Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California (L.S., C.E.C.A.H.); DMPK, Biogen Idec, Cambridge, Massachusetts (C.R., G.X.); Clinical Pharmacology (A.M.) and
Drug Metab Dispos ; 49(2): 159-168, 2021 02.
Article en En | MEDLINE | ID: mdl-33051248
ABSTRACT
Suspended, plated, or sandwich-cultured human hepatocytes are routinely used for in vitro to in vivo extrapolation (IVIVE) of transporter-mediated hepatic clearance (CL) of drugs. However, these hepatocyte models have been reported to underpredict transporter-mediated in vivo hepatic uptake CL (CL uptake,in vivo ) of some drugs. Therefore, we determined whether transporter-expressing cells (TECs) can accurately predict the CL uptake,in vivo of drugs. To do so, we determined the uptake CL (CL int,uptake,cells ) of rosuvastatin (RSV) by TECs (organic anion transporting polypeptides/Na+-taurocholate cotransporting polypeptide) and then scaled it to that in vivo by relative expression factor (REF) (the ratio of transporter abundance in human livers and TEC) determined by liquid chromatography tandem mass spectrometry-based quantitative proteomics. Both the TEC and hepatocyte models did not meet our predefined success criteria of predicting within 2-fold the RSV CL uptake,in vivo value obtained from our positron emission tomography (PET) imaging. However, the TEC performed better than the hepatocyte models. Interestingly, using REF, TECs successfully predicted RSV CL int,uptake,hep obtained by the hepatocyte models, suggesting that the underprediction of RSV CL uptake,in vivo by TECs and hepatocytes is due to endogenous factor(s) not present in these in vitro models. Therefore, we determined whether inclusion of plasma (or albumin) in TEC uptake studies improved IVIVE of RSV CL uptake,in vivo It did, and our predictions were close to or just fell above our lower 2-fold acceptance boundary. Despite this success, additional studies are needed to improve transporter-mediated IVIVE of hepatic uptake CL of drugs. However, using REF and TEC, we successfully predicted the magnitude of PET-imaged inhibition of RSV CL uptake,in vivo by cyclosporine A. SIGNIFICANCE STATEMENT We showed that the in vivo transporter-mediated hepatic uptake CL of rosuvastatin, determined by PET imaging, can be predicted (within 2-fold) from in vitro studies in transporter-expressing cells (TECs) (scaled using REF), but only when plasma proteins were included in the in vitro studies. This conclusion did not hold when plasma proteins were absent in the TEC or human hepatocyte studies. Thus, additional studies are needed to improve in vitro to in vivo extrapolation of transporter-mediated drug CL.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Inhibidores de Hidroximetilglutaril-CoA Reductasas / Hepatocitos / Proteómica / Rosuvastatina Cálcica Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Inhibidores de Hidroximetilglutaril-CoA Reductasas / Hepatocitos / Proteómica / Rosuvastatina Cálcica Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Año: 2021 Tipo del documento: Article