Your browser doesn't support javascript.
loading
Analytical Prediction for Nonlinear Buckling of Elastically Supported FG-GPLRC Arches under a Central Point Load.
Yang, Zhicheng; Liu, Airong; Yang, Jie; Lai, Siu-Kai; Lv, Jiangen; Fu, Jiyang.
Afiliación
  • Yang Z; College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
  • Liu A; Wind and Vibration Engineering Research Center, Guangzhou University, Guangzhou 510006, China.
  • Yang J; School of Engineering, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia.
  • Lai SK; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
  • Lv J; Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
  • Fu J; College of Urban and Rural Construction, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
Materials (Basel) ; 14(8)2021 Apr 17.
Article en En | MEDLINE | ID: mdl-33920651
ABSTRACT
In this paper, we present an analytical prediction for nonlinear buckling of elastically supported functionally graded graphene platelet reinforced composite (FG-GPLRC) arches with asymmetrically distributed graphene platelets (GPLs). The effective material properties of the FG-GPLRC arch are formulated by the modified Halpin-Tsai micromechanical model. By using the principle of virtual work, analytical solutions are derived for the limit point buckling and bifurcation buckling of the FG-GPLRC arch subjected to a central point load (CPL). Subsequently, the buckling mode switching phenomenon of the FG-GPLRC arch is presented and discussed. We found that the buckling modes of the FG-GPLRC arch are governed by the GPL distribution pattern, rotational restraint stiffness, and arch geometry. In addition, the number of limit points in the nonlinear equilibrium path of the FG-GPLRC arch under a CPL can be determined according to the bounds of successive inflexion points. The effects of GPL distribution patterns, weight fractions, and geometric configurations on the nonlinear buckling behavior of elastically supported FG-GPLRC arches are also comprehensively discussed.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Año: 2021 Tipo del documento: Article