Your browser doesn't support javascript.
loading
Anterograde regulation of mitochondrial genes and FGF21 signaling by hepatic LSD1.
Cao, Yang; Tang, Lingyi; Du, Kang; Paraiso, Kitt; Sun, Qiushi; Liu, Zhengxia; Ye, Xiaolong; Fang, Yuan; Yuan, Fang; Chen, Hank; Chen, Yumay; Wang, Xiaorong; Yu, Clinton; Blitz, Ira L; Wang, Ping H; Huang, Lan; Cheng, Haibo; Lu, Xiang; Cho, Ken Wy; Seldin, Marcus; Fang, Zhuyuan; Yang, Qin.
Afiliación
  • Cao Y; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Tang L; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Du K; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
  • Paraiso K; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Sun Q; Department of Developmental & Cell Biology, UCI, Irvine, California, USA.
  • Liu Z; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Ye X; Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.
  • Fang Y; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Yuan F; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Chen H; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Chen Y; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Wang X; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Yu C; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Blitz IL; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Wang PH; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Huang L; Department of Developmental & Cell Biology, UCI, Irvine, California, USA.
  • Cheng H; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Lu X; Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.
  • Cho KW; Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
  • Seldin M; Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.
  • Fang Z; Department of Developmental & Cell Biology, UCI, Irvine, California, USA.
  • Yang Q; Department of Biological Chemistry, UCI, Irvine, California, USA.
JCI Insight ; 6(17)2021 09 08.
Article en En | MEDLINE | ID: mdl-34314389
ABSTRACT
Mitochondrial biogenesis and function are controlled by anterograde regulatory pathways involving more than 1000 nuclear-encoded proteins. Transcriptional networks controlling the nuclear-encoded mitochondrial genes remain to be fully elucidated. Here, we show that histone demethylase LSD1 KO from adult mouse liver (LSD1-LKO) reduces the expression of one-third of all nuclear-encoded mitochondrial genes and decreases mitochondrial biogenesis and function. LSD1-modulated histone methylation epigenetically regulates nuclear-encoded mitochondrial genes. Furthermore, LSD1 regulates gene expression and protein methylation of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), which controls the final step of NAD+ synthesis and limits NAD+ availability in the nucleus. Lsd1 KO reduces NAD+-dependent SIRT1 and SIRT7 deacetylase activity, leading to hyperacetylation and hypofunctioning of GABPß and PGC-1α, the major transcriptional factor/cofactor for nuclear-encoded mitochondrial genes. Despite the reduced mitochondrial function in the liver, LSD1-LKO mice are protected from diet-induced hepatic steatosis and glucose intolerance, partially due to induction of hepatokine FGF21. Thus, LSD1 orchestrates a core regulatory network involving epigenetic modifications and NAD+ synthesis to control mitochondrial function and hepatokine production.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: ARN / Regulación de la Expresión Génica / Genes Mitocondriales / Hígado Graso / Histona Demetilasas / Factores de Crecimiento de Fibroblastos / Hígado Límite: Animals Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: ARN / Regulación de la Expresión Génica / Genes Mitocondriales / Hígado Graso / Histona Demetilasas / Factores de Crecimiento de Fibroblastos / Hígado Límite: Animals Idioma: En Año: 2021 Tipo del documento: Article