Your browser doesn't support javascript.
loading
Repeated strand invasion and extensive branch migration are hallmarks of meiotic recombination.
Ahuja, Jasvinder S; Harvey, Catherine S; Wheeler, David L; Lichten, Michael.
Afiliación
  • Ahuja JS; Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
  • Harvey CS; Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
  • Wheeler DL; Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
  • Lichten M; Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA. Electronic address: michael.lichten@nih.gov.
Mol Cell ; 81(20): 4258-4270.e4, 2021 10 21.
Article en En | MEDLINE | ID: mdl-34453891
ABSTRACT
Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Intercambio de Cromátides Hermanas / ADN de Hongos / Intercambio Genético / ADN Cruciforme / Roturas del ADN de Doble Cadena / Reparación del ADN por Recombinación / Meiosis Tipo de estudio: Prognostic_studies Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Intercambio de Cromátides Hermanas / ADN de Hongos / Intercambio Genético / ADN Cruciforme / Roturas del ADN de Doble Cadena / Reparación del ADN por Recombinación / Meiosis Tipo de estudio: Prognostic_studies Idioma: En Año: 2021 Tipo del documento: Article